Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Mi Mi
Xem chi tiết

a: \(n^3-2⋮n-2\)

=>\(n^3-8+6⋮n-2\)

=>\(6⋮n-2\)

=>\(n-2\in\left\{1;-1;2;-2;3;-3;6;-6\right\}\)

=>\(n\in\left\{3;1;4;0;5;-1;8;-4\right\}\)

b: \(n^3-3n^2-3n-1⋮n^2+n+1\)

=>\(n^3+n^2+n-4n^2-4n-4+3⋮n^2+n+1\)

=>\(3⋮n^2+n+1\)

=>\(n^2+n+1\in\left\{1;-1;3;-3\right\}\)

mà \(n^2+n+1=\left(n+\dfrac{1}{2}\right)^2+\dfrac{3}{4}>=\dfrac{3}{4}\forall n\)

nên \(n^2+n+1\in\left\{1;3\right\}\)

=>\(\left[{}\begin{matrix}n^2+n+1=1\\n^2+n+1=3\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}n^2+n=0\\n^2+n-2=0\end{matrix}\right.\)

=>\(\left[{}\begin{matrix}n\left(n+1\right)=0\\\left(n+2\right)\left(n-1\right)=0\end{matrix}\right.\Leftrightarrow n\in\left\{0;-1;-2;1\right\}\)

Trần Thùy Linh
Xem chi tiết
Triết
Xem chi tiết
Nguyễn Lê Phước Thịnh
11 tháng 11 2021 lúc 20:14

\(\Leftrightarrow n^5+n^2-n^2+1⋮n^3+1\)

\(\Leftrightarrow-n^3+n⋮n^3+1\)

\(\Leftrightarrow n=1\)

Hiền Nguyễn
Xem chi tiết
Lấp La Lấp Lánh
2 tháng 11 2021 lúc 12:05

\(n^5-n=n\left(n^4-1\right)=n\left(n^2-1\right)\left(n^2+1\right)\)

\(=n\left(n-1\right)\left(n+1\right)\left(n^2-4+5\right)=\left(n-2\right)\left(n-1\right)n\left(n+1\right)\left(n+2\right)+5n\left(n-1\right)\left(n+1\right)\)

Do \(\left(n-2\right)\left(n-1\right)n\left(n+1\right)\left(n+2\right)\) là tích 5 số nguyên liên tiếp nên chia hết cho 5 và \(5n\left(n-1\right)\left(n+1\right)⋮5\forall n\in Z^+\)

\(\Rightarrow n^5-n⋮5\forall n\in Z^+\)

Vô Danh Tiểu Tốt
Xem chi tiết
Lương Khánh Linh
Xem chi tiết
Nguyễn Thị Tuyết Nhung
Xem chi tiết
Hồ Trương Minh Trí
Xem chi tiết
Hồng Phúc
22 tháng 8 2021 lúc 16:52

a, Nếu \(n=3k\left(k\in Z\right)\Rightarrow A=n^3-n=27k^3-3k⋮3\)

Nếu \(n=3k+1\left(k\in Z\right)\)

\(\Rightarrow A=n^3-n\)

\(=n\left(n-1\right)\left(n+1\right)\)

\(=\left(3k+1\right).3k.\left(3k+2\right)⋮3\)

Nếu \(n=3k+2\left(k\in Z\right)\)

\(\Rightarrow A=n^3-n\)

\(=n\left(n-1\right)\left(n+1\right)\)

\(=\left(3k+2\right)\left(n+1\right)\left(3k+3\right)⋮3\)

Vậy \(n^3-n⋮3\forall n\in Z\)

Nguyễn Hoài Đức CTVVIP
22 tháng 8 2021 lúc 16:57

 n3−n⋮3∀n∈Z

Lấp La Lấp Lánh
22 tháng 8 2021 lúc 17:07

a) \(n^3-n=n\left(n^2-1\right)=\left(n-1\right)n\left(n+1\right)\) là tích 3 số nguyên liên tiếp nên chia hết cho 3

b) \(n\left(n-1\right)\left(2n-1\right)=n\left(n-1\right)\left(n+1+n-2\right)=\left(n-1\right)n\left(n+1\right)+\left(n-2\right)\left(n-1\right)n\)Ta có: \(\left(n-1\right)n\left(n+1\right)\) là tích 3 số nguyên liên tiếp nên có một số chia hết cho 2 và một số chia hết cho 3, mà(2,3)=1 nên \(\left(n-1\right)n\left(n+1\right)⋮6\) 

Tương tự ta cũng được \(\left(n-2\right)\left(n-1\right)n⋮6\)

\(\Rightarrow\left(n-1\right)n\left(n+1\right)+\left(n-2\right)\left(n-1\right)n⋮6\)

\(\Rightarrow n\left(n-1\right)\left(2n-1\right)⋮6\left(đpcm\right)\)

Panda
Xem chi tiết
Trần Thùy Dương
17 tháng 8 2018 lúc 15:06

Ta có  : 

\(n^5+1⋮n^3+1\)

\(\Leftrightarrow n^2\left(n^3+1\right)-\left(n^2-1\right)⋮n^3+1\)

\(\Leftrightarrow\left(n+1\right)\left(n-1\right)⋮\left(n+1\right)\left(n^2-n+1\right)\)

\(\Leftrightarrow n-1⋮n^2-n+1\)vì \(n+1\ne0\)

+) Trường hợp 1 :

Nếu n=1 thì giá trị cần tìm là \(0⋮1\)

+) Trường hợp 2:

Nếu n <  1 thì ta có :

\(n-1< n\left(n-1\right)+1=n^2-n+1\)

\(\Rightarrow n\)không chia hết cho \(n^2-n+1\) ( loại)

Vậy giá trị cần tìm để chia hết là 1 .

Lưu Phúc Bình An
10 tháng 12 2023 lúc 15:03

Tại sao???