a, Nếu \(n=3k\left(k\in Z\right)\Rightarrow A=n^3-n=27k^3-3k⋮3\)
Nếu \(n=3k+1\left(k\in Z\right)\)
\(\Rightarrow A=n^3-n\)
\(=n\left(n-1\right)\left(n+1\right)\)
\(=\left(3k+1\right).3k.\left(3k+2\right)⋮3\)
Nếu \(n=3k+2\left(k\in Z\right)\)
\(\Rightarrow A=n^3-n\)
\(=n\left(n-1\right)\left(n+1\right)\)
\(=\left(3k+2\right)\left(n+1\right)\left(3k+3\right)⋮3\)
Vậy \(n^3-n⋮3\forall n\in Z\)
a) \(n^3-n=n\left(n^2-1\right)=\left(n-1\right)n\left(n+1\right)\) là tích 3 số nguyên liên tiếp nên chia hết cho 3
b) \(n\left(n-1\right)\left(2n-1\right)=n\left(n-1\right)\left(n+1+n-2\right)=\left(n-1\right)n\left(n+1\right)+\left(n-2\right)\left(n-1\right)n\)Ta có: \(\left(n-1\right)n\left(n+1\right)\) là tích 3 số nguyên liên tiếp nên có một số chia hết cho 2 và một số chia hết cho 3, mà(2,3)=1 nên \(\left(n-1\right)n\left(n+1\right)⋮6\)
Tương tự ta cũng được \(\left(n-2\right)\left(n-1\right)n⋮6\)
\(\Rightarrow\left(n-1\right)n\left(n+1\right)+\left(n-2\right)\left(n-1\right)n⋮6\)
\(\Rightarrow n\left(n-1\right)\left(2n-1\right)⋮6\left(đpcm\right)\)
a: Ta có: \(n^3-n\)
\(=n\left(n^2-1\right)\)
\(=\left(n-1\right)\cdot n\cdot\left(n+1\right)\)
Vì n-1;n;n+1 là ba số nguyên liên tiếp
nên \(\left(n-1\right)\cdot n\cdot\left(n+1\right)⋮3\)
b: Ta có: \(n\left(n-1\right)\left(2n-1\right)\)
\(=n\left(n-1\right)\left(n-2+n+1\right)\)
\(=n\left(n-1\right)\left(n-2\right)+\left(n-1\right)\cdot n\cdot\left(n+1\right)\)
Vì n;n-1;n-2 là ba số nguyên liên tiếp
nên \(n\left(n-1\right)\left(n-2\right)⋮3!=6\)
Vì n-1;n;n+1 là ba số nguyên liên tiếp
nên \(\left(n-1\right)\cdot n\cdot\left(n+1\right)⋮3!=6\)
mà \(n\left(n-1\right)\left(n-2\right)⋮3!=6\)
nên \(n\left(n-1\right)\left(2n-1\right)⋮6\)