tìm x biết \(\frac{x+2}{98}+\frac{x+4}{96}=\frac{x+6}{94}+\frac{x+8}{92}\)
Giair pt sau : \(\frac{x+2}{98}+\frac{x+4}{96}=\frac{x+6}{94}+\frac{x+8}{92}\)
Câu này tớ giải hơn 10 lần rồi cậu ( ko xàm :)
\(\frac{x+2}{98}+\frac{x+4}{96}=\frac{x+6}{94}+\frac{x+8}{92}\)
\(\Leftrightarrow\left(\frac{x+2}{98}+1\right)+\left(\frac{x+4}{96}+1\right)=\left(\frac{x+6}{94}+1\right)+\left(\frac{x+8}{92}+1\right)\)
\(\Leftrightarrow\left(x+100\right)\left(\frac{1}{98}+\frac{1}{96}-\frac{1}{94}-\frac{1}{92}\right)=0\)
Vì \(\frac{1}{98}+\frac{1}{96}-\frac{1}{94}-\frac{1}{92}\ne0\)
Do đó \(x+100=0\Leftrightarrow x=-100\)
Vậy pt có nghiệm : x=-100
Ta có : \(\frac{x+2}{98}+\frac{x+4}{96}=\frac{x+6}{94}+\frac{x+8}{92}\)
=> \(\frac{x+2}{98}+1+\frac{x+4}{96}+1=\frac{x+6}{94}+1+\frac{x+8}{92}+1\)
=> \(\frac{x+100}{98}+\frac{x+100}{96}=\frac{x+100}{94}+\frac{x+100}{92}\)
=> \(\frac{x+100}{98}+\frac{x+100}{96}-\frac{x+100}{94}-\frac{x+100}{92}=0\)
=> \(\left(x+100\right)\left(\frac{1}{98}+\frac{1}{96}-\frac{1}{94}-\frac{1}{92}\right)=0\)
Vì \(\frac{1}{98}+\frac{1}{96}-\frac{1}{94}-\frac{1}{92}\ne0\)
=> x + 100 = 0
=> x = - 100
Vậy x = - 100
\(\Leftrightarrow\frac{x+2}{98}+1+\frac{x+4}{96}+1=\frac{x+6}{94}+1+\frac{x+8}{98}+1\)
\(\Leftrightarrow\frac{x+100}{98}+\frac{x+100}{96}=\frac{x+100}{94}+\frac{x+100}{92}\)
\(\Leftrightarrow\left(x+100\right)\left(\frac{1}{98}+\frac{1}{96}\right)=\left(x+100\right)\left(\frac{1}{94}+\frac{1}{92}\right)\)
Do \(\frac{1}{98}+\frac{1}{96}\ne\frac{1}{94}+\frac{1}{92}\)\(\Rightarrow x+100=0\)
\(\Leftrightarrow x=-100\)
Vậy \(x=-100\)
~Hok Tốt~
Giair phương trình \(\frac{x+2}{98}+\frac{x+4}{96}=\frac{x+6}{94}+\frac{x+8}{92}\)
\(\frac{x+2}{98}+\frac{x+4}{96}=\frac{x+6}{94}+\frac{x+8}{92}\)
\(\Leftrightarrow\left(\frac{x+2}{98}+1\right)+\left(\frac{x+4}{96}+1\right)=\left(\frac{x+6}{94}+1\right)+\left(\frac{x+8}{92}+1\right)\)
\(\Leftrightarrow\frac{100+x}{98}+\frac{100+x}{96}-\frac{100+x}{94}-\frac{100+x}{92}=0\)
\(\Rightarrow\left(100+x\right)\left(\frac{1}{98}+\frac{1}{96}+\frac{1}{94}+\frac{1}{92}\right)=0\)
Vì \(\frac{1}{98}+\frac{1}{96}+\frac{1}{94}+\frac{1}{92}\ne0\)
\(\Rightarrow100+x=0\)
\(\Rightarrow x=-100\)
\(\frac{x+2}{98}+\frac{x+4}{96}=\frac{x+6}{94}+\frac{x+8}{92}\)
\(\Leftrightarrow\frac{x+2}{98}+1+\frac{x+4}{96}+1=\frac{x+6}{94}+1+\frac{x+8}{92}+1\)
\(\Leftrightarrow\frac{x+100}{98}+\frac{x+100}{96}=\frac{x+100}{94}+\frac{x+100}{92}\)
\(\Leftrightarrow\frac{x+100}{98}+\frac{x+100}{96}-\frac{x+100}{94}-\frac{x+100}{92}=0\)
\(\Leftrightarrow\left(x+100\right)\left(\frac{1}{98}+\frac{1}{96}-\frac{1}{94}-\frac{1}{92}\right)=0\)
Vì \(\frac{1}{98}< \frac{1}{96}< \frac{1}{94}< \frac{1}{92}\)nên \(\left(\frac{1}{98}+\frac{1}{96}-\frac{1}{94}-\frac{1}{92}\right)< 0\)
Vậy \(x+100=0\Leftrightarrow x=-100\)
Giải phương trình \(\frac{x+2}{98}+\frac{x+4}{96}=\frac{x+6}{94}+\frac{x+8}{92}\)
\(\frac{x+2}{98}+1+\frac{x+4}{96}+1=\frac{x+6}{94}+1+\frac{x+8}{92}+1\)
\(\Rightarrow\frac{x+100}{98}+\frac{x+100}{96}=\frac{x+100}{94}+\frac{x+100}{92}\)
\(\Rightarrow\frac{x+100}{98}+\frac{x+100}{96}-\frac{x+100}{94}-\frac{x+100}{92}=0\)
\(\Rightarrow\left(x+100\right).\left(\frac{1}{98}+\frac{1}{96}-\frac{1}{94}-\frac{1}{92}\right)=0\)
\(\Rightarrow x+100=0\)
\(\Rightarrow x=-100\)
Vậy : \(x=-100\)
\(\frac{x+2}{98}+\frac{x+4}{96}=\frac{x+6}{94}+\frac{x+8}{92}\)
\(\Leftrightarrow\left(\frac{x+2}{98}+1\right)+\left(\frac{x+4}{96}+1\right)=\left(\frac{x+6}{94}+1\right)+\left(\frac{x+8}{92}+1\right)\)
\(\Leftrightarrow\frac{x+100}{98}+\frac{x+100}{96}-\frac{x+100}{94}+\frac{x+100}{92}=0\)
\(\Leftrightarrow\left(x+100\right)\left(\frac{1}{98}+\frac{1}{96}-\frac{1}{94}-\frac{1}{92}\right)=0\)
Vì : \(\frac{1}{98}+\frac{1}{96}-\frac{1}{94}-\frac{1}{92}\ne0\Leftrightarrow x+100=0\Leftrightarrow x=-100\)
Vậy \(x=-100\)
Chúc bạn học tốt !!!
\(\frac{x+2}{98}+\frac{x+4}{96}=\frac{x+6}{94}+\frac{x+8}{92}\)
\(\Leftrightarrow\left(\frac{x+2}{98}+1\right)+\left(\frac{x+4}{96}+1\right)=\left(\frac{x+6}{94}+1\right)+\left(\frac{x+8}{92}+1\right)\)
\(\Leftrightarrow\left(x+100\right)\left(\frac{1}{98}+\frac{1}{96}+-\frac{1}{94}-\frac{1}{92}\right)=0\)
Vì \(\frac{1}{98}+\frac{1}{96}-\frac{1}{94}-\frac{1}{92}\ne0\)
Do đó : \(x+100=0\Leftrightarrow x=-100\)
Vậy phương trình có nghiệm : \(x=-100\)
Giaỉ phương trình:
\(\frac{x+2}{98}+\frac{x+4}{96}=\frac{x+6}{94}+\frac{x+8}{92}\)
\(\frac{x+2}{98}+\frac{x+4}{96}=\frac{x+6}{94}+\frac{x+8}{92}\)
\(\Leftrightarrow\left(\frac{x+2}{98}+1\right)+\left(\frac{x+4}{96}+1\right)-2=\left(\frac{x+6}{94}+1\right)+\left(\frac{x+8}{92}+1\right)-2\)
\(\Leftrightarrow\frac{x+100}{98}+\frac{x+100}{96}-\frac{x+100}{94}-\frac{x+100}{92}=0\)
\(\Leftrightarrow\left(x+100\right)\times\left(\frac{1}{98}+\frac{1}{96}-\frac{1}{94}-\frac{1}{92}\right)=0\)
\(\Leftrightarrow x+100=0\left(\frac{1}{98}+\frac{1}{96}-\frac{1}{94}-\frac{1}{92}\ne0\right)\)
\(\Leftrightarrow x=-100\)
Vậy......
Giải phương trình \(\frac{x+2}{98}+\frac{x+4}{96}=\frac{x+6}{94}+\frac{x+8}{92}\)
Cộng hai vào mỗi vễ của phương trình ta có
\(\Leftrightarrow\frac{x+2}{98}+\frac{x+4}{96}+2=\frac{x+6}{94}+\frac{x+8}{92}+2\)
\(\Leftrightarrow\frac{x+2}{98}+1+\frac{x+4}{96}+1=\frac{x+6}{94}+1+\frac{X+8}{92}+1\)
\(\Leftrightarrow\frac{x+2+98}{98}+\frac{x+4+96}{96}=\frac{x+6+94}{94}+\frac{x+8+92}{92}\)
\(\Leftrightarrow\frac{x+100}{98}+\frac{x+100}{96}=\frac{x+100}{94}+\frac{x+100}{92}\)
\(\Leftrightarrow\frac{x+100}{98}+\frac{x+100}{96}-\frac{x+100}{94}-\frac{x+100}{92}=0\)
\(\Leftrightarrow\left(x+100\right)\left(\frac{1}{98}+\frac{1}{96}-\frac{1}{94}-\frac{1}{92}\right)=0\)
\(\Rightarrow x+100=0\Leftrightarrow x=-100\)
Vậy S={-100}
toan lop 7 ma khong biet con gia vo toan 8
Giải bất phương trình sau:
\(\frac{x+8}{92}+\frac{x+7}{93}+\frac{x+6}{94}\ge\frac{x+2}{98}+\frac{x+3}{97}+\frac{x+4}{96}\)
\(\Leftrightarrow\frac{x+8}{92}+1+\frac{x+7}{93}+1+\frac{x+6}{94}+1\ge\frac{x+2}{98}+1+\frac{x+3}{97}+1+\frac{x+4}{96}+1\)
\(\Leftrightarrow\frac{x+100}{92}+\frac{x+100}{93}+\frac{x+100}{94}\ge\frac{x+100}{98}+\frac{x+100}{97}+\frac{x+100}{96}\)
\(\Leftrightarrow\left(x+100\right)\left(\frac{1}{92}-\frac{1}{98}+\frac{1}{93}-\frac{1}{97}+\frac{1}{94}-\frac{1}{96}\right)\ge0\)
\(\Leftrightarrow\left(x+100\right)\left(\frac{6}{92.98}+\frac{4}{93.97}+\frac{2}{94.96}\right)\ge0\)
\(\Leftrightarrow x+100\ge0\Rightarrow x\ge-100\)
Giải các phương trình:
\(a,\frac{x+2}{98}+\frac{x+4}{96}=\frac{x+6}{94}+\frac{x+8}{92}\)
\(b,\frac{x-12}{77}+\frac{x-11}{78}=\frac{x-74}{15}+\frac{x-73}{16}\)
a) \(\Leftrightarrow\frac{x+2}{98}+\frac{x+4}{96}+2=\frac{x+6}{94}+\frac{x+8}{92}+2\)
\(\Leftrightarrow\frac{x+100}{98}+\frac{x+100}{96}-\frac{x+100}{94}-\frac{x+100}{92}=0\)
\(\Leftrightarrow\left(x+100\right)\left(\frac{1}{98}+\frac{1}{96}+\frac{1}{94}+\frac{1}{92}\right)=0\)
\(\Leftrightarrow x+100=0\Leftrightarrow x=-100\)
b)\(\Leftrightarrow\frac{x-12}{77}+\frac{x-11}{78}-2=\frac{x-74}{15}+\frac{x-73}{16}-2\)
\(\Leftrightarrow\frac{x-89}{77}+\frac{x-89}{78}-\frac{x-89}{15}-\frac{x-89}{16}=0\)
\(\Leftrightarrow\left(x-89\right)\left(\frac{1}{77}+\frac{1}{78}-\frac{1}{15}-\frac{1}{16}\right)=0\)
\(\Leftrightarrow x-89=0\Leftrightarrow x=89\)
Giải các phương trình:
\(a,\frac{x+2}{98}+\frac{x+4}{96}=\frac{x+6}{94}+\frac{x+8}{92}\)
\(b,\frac{x-12}{77}+\frac{x-11}{78}=\frac{x-74}{15}+\frac{x-73}{16}\)
Lời giải:
a)
PT \(\Leftrightarrow \frac{x+2}{98}+1+\frac{x+4}{96}+1=\frac{x+6}{94}+1+\frac{x+8}{92}+1\)
\(\Leftrightarrow \frac{x+100}{98}+\frac{x+100}{96}=\frac{x+100}{94}+\frac{x+100}{92}\)
\(\Leftrightarrow (x+100)\left(\frac{1}{98}+\frac{1}{96}-\frac{1}{94}-\frac{1}{92}\right)=0\)
Dễ thấy \(\frac{1}{98}+\frac{1}{96}-\frac{1}{94}-\frac{1}{92}<0\) nên $x+100=0$
$\Rightarrow x=-100$
b)
PT \(\Leftrightarrow \frac{x-12}{77}-1+\frac{x-11}{78}-1=\frac{x-74}{15}-1+\frac{x-73}{16}-1\)
\(\Leftrightarrow \frac{x-89}{77}+\frac{x-89}{78}=\frac{x-89}{15}+\frac{x-89}{16}\)
\(\Leftrightarrow (x-89)\left(\frac{1}{77}+\frac{1}{78}-\frac{1}{15}-\frac{1}{16}\right)=0\)
Dễ thấy \(\frac{1}{77}+\frac{1}{78}-\frac{1}{15}-\frac{1}{16}< 0\)
\(\Rightarrow x-89=0\Rightarrow x=89\)
giai phương trình:
a) \(\frac{x+2}{98}+\frac{x+4}{96}=\frac{x+6}{94}+\frac{x+8}{92}\)
b) \(3x^2+2x-1=0\)
c) \(\frac{x-3}{x-2}+\frac{x-2}{4}=3\frac{1}{5}\)
a) \(\left(\frac{x+2}{98}+1\right)+\left(\frac{x+4}{96}+1\right)=\left(\frac{x+6}{94}+1\right)+\left(\frac{x+8}{92}+1\right)\)
\(\Leftrightarrow\frac{x+100}{98}+\frac{x+100}{96}=\frac{x+100}{94}+\frac{x+100}{92}\)
\(\Leftrightarrow\left(x+100\right)\left(\frac{1}{98}+\frac{1}{96}-\frac{1}{94}-\frac{1}{92}\right)=0\)
\(\Leftrightarrow x+100=0\) ( do \(\frac{1}{98}+\frac{1}{96}-\frac{1}{94}-\frac{1}{92}\ne0\) )
\(\Leftrightarrow x=-100\)
b) \(3x^2+2x-1=0\)
\(\Leftrightarrow3x^2+3x-x-1=0\)
\(\Leftrightarrow3x\left(x+1\right)-\left(x+1\right)=0\)
\(\Leftrightarrow\left(3x-1\right)\left(x+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}3x-1=0\\x+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\frac{1}{3}\\x=-1\end{matrix}\right.\)