S=1/3+1/9+1/27+1/81
S = \(81\) + \(27\) + \(9\) + \(3\) ... + \(\dfrac{1}{27}\) + \(\dfrac{1}{81}\)
Tính S giúp mik với ạ, ai nhanh mik tick
\(3S=241+81+27+9+...+\dfrac{1}{9}+\dfrac{1}{27}\)
\(2S=3S-S=241-\dfrac{1}{81}=\dfrac{241x81-1}{81}\)
\(\Rightarrow S=\dfrac{241x81-1}{2x81}\)
S=1+1/3+1/9+1/27+1/81+1/243+1/709
giúp mình làm nhé
Sửa đề: 1/729
S=1+1/3+...+1/729
=1+1/3+...+(1/3)^6
=>3S=3+1+...+(1/3)^5
=>2S=3-(1/3)^6=(3^7-1)/3^6
=>S=(3^7-1)/(3^6*2)
Tính tổng sau đây bằng cách thuận tiện nhất :
` S = 1/3 + 1/9 + 1/27 + 1/81 `
= 1 x 27/3x27 + 1x9/9x9 + 1x3 / 27 x 3 + 1/81
=27/81 + 9/81 + 3/81 + 1/81
= 40/81
Tính tổng bằng cách hợp lí:
S= 1/3+1/9+1/27+1/81+........+1/243
S = 1/3+1/9+1/27+1/81+1/243+1/729+1/2187 ( 1 )
Nhân S với 3. Ta có:
S x 3 = 1 + 1/3 + 1/9 + 1/27 + 1/81 + 1/243 + 1/729 ( 2 )
Trừ ( 2 ) với ( 1 ) ta có:
S x 3 - S = 1 - 1/ 2187
2S = 2186/ 2187
S = 2186/ 2187 : 2
S = 1093/ 2187
Câu 3. (2 điểm) Tính nhanh tổng sau
S = 1 + \(\dfrac{1}{3}\) + \(\dfrac{1}{9}\) + \(\dfrac{1}{27}\) +\(\dfrac{1}{81}\) + \(\dfrac{1}{243}\)+ \(\dfrac{1}{729}\)
S= 1/1 + 1/3 + 1/9 + 1/27 + 1/81 + 1/243 + 1/729
S= 3 x ( 1/1 + 1/3 + 1/9 + 1/27 + 1/81 + 1/243 + 1/729 )
S = 3 +1 + 1/9 + 1/27 + 1/81 + 1/243 + 1/729
S= 3 +1 + 1/9 + 1/27 + 1/81 + 1/243 + 1/729 - 1 - 1/9 -1/27 - 1/81 - 1/243 - 1/729
S = 3 - 1/729
S= 142/729
S = 1 + 1/3 + 1/9 + 1/27 + 1/81 + 1/243 + 1/729
Các bạn giúp mình với
\(S=1+\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+\frac{1}{81}+\frac{1}{243}+\frac{1}{729}\)
\(3\times S=3+1+\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+\frac{1}{81}+\frac{1}{243}\)
\(3\times S-S=\left(3+1+\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+\frac{1}{81}+\frac{1}{243}\right)-\left(1+\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+\frac{1}{81}+\frac{1}{243}+\frac{1}{729}\right)\)
\(2\times S=3-\frac{1}{729}\)
\(S=\frac{1093}{729}\)
(y+1/3)+(y+1/9)+(y+1/27)+(y+1/81)=56/81
(y + \(\dfrac{1}{3}\)) + ( y + \(\dfrac{1}{9}\)) + ( y + \(\dfrac{1}{27}\)) + ( y + \(\dfrac{1}{81}\)) = \(\dfrac{56}{81}\)
( y + y + y + y ) + (\(\dfrac{1}{3}\)+ \(\dfrac{1}{9}\) + \(\dfrac{1}{27}\) + \(\dfrac{1}{81}\)) = \(\dfrac{56}{81}\)
4\(y\) + ( \(\dfrac{27}{81}\) + \(\dfrac{9}{81}\) + \(\dfrac{3}{27}\) + \(\dfrac{1}{81}\) ) = \(\dfrac{56}{81}\)
4y + \(\dfrac{40}{81}\) = \(\dfrac{56}{81}\)
4y = \(\dfrac{56}{81}\) - \(\dfrac{40}{81}\)
4y = \(\dfrac{16}{81}\)
y = \(\dfrac{16}{81}\) : 4
y = \(\dfrac{4}{81}\)
\(\left(y+\dfrac{1}{3}\right)+\left(y+\dfrac{1}{9}\right)+\left(y+\dfrac{1}{27}\right)+\left(y+\dfrac{1}{81}\right)=\dfrac{56}{81}\)
\(\Rightarrow y+\dfrac{1}{3}+y+\dfrac{1}{9}+y+\dfrac{1}{27}+y+\dfrac{1}{81}=\dfrac{56}{81}\)
\(\Rightarrow4\times y+\dfrac{40}{81}=\dfrac{56}{81}\)
\(\Rightarrow4\times y=\dfrac{56}{81}-\dfrac{40}{81}\)
\(\Rightarrow4\times y=\dfrac{16}{81}\)
\(\Rightarrow y=\dfrac{16}{81}:4\)
\(\Rightarrow y=\dfrac{4}{81}\)
\((y+\dfrac{1}{3})+(y+\dfrac{1}{9})+(y+\dfrac{1}{27})+(y+\dfrac{1}{81})=\dfrac{56}{81}\)
\(=>4y+(\dfrac{1}{3}+\dfrac{1}{9]+\dfrac{1}{27}+\dfrac{1}{81})=\dfrac{56}{81}\)
\(=>4y+\dfrac{1}{3}(1+\dfrac{1}{3}+\dfrac{1}{9}+\dfrac{1}{27})=\dfrac{56}{81}\)
\(=>4y+\dfrac{1}{2}(1+\dfrac{1}{3}+\dfrac{1}{9}+\dfrac{1}{27}-\dfrac{1}{3}-\dfrac{1}{9}-\dfrac{1}{27}-\dfrac{1}{81})=\dfrac{56}{81}\)
\(=>4y+\dfrac{1}{2}(1-\dfrac{1}{81})=\dfrac{56}{81}\)
\(=>4y+\dfrac{1}{2}\times\dfrac{80}{81}=\dfrac{56}{81}\)
\(=>4y+\dfrac{40}{81}=\dfrac{56}{81}\)
\(=>4y=\dfrac{56}{81}-\dfrac{40}{81}\)
\(=>4y=\dfrac{16}{81}\)
\(=>y=\dfrac{4}{81}\)
a) 1+1/3 + 1/9 + 1/27 + 1/81
\(A=1+\dfrac{1}{3}+\dfrac{1}{9}+\dfrac{1}{27}+\dfrac{1}{81}\) \(\Rightarrow3A=3+1+\dfrac{1}{3}+\dfrac{1}{9}+\dfrac{1}{27}\)
\(\Rightarrow3A-A=3-\dfrac{1}{81}\Rightarrow2A=\dfrac{242}{81}\Rightarrow A=\dfrac{121}{81}\)
( y +1/3) + ( y + 1/9 ) + (y+1/27) + (y+1/81)= 56/81
a) (x+1)/3 + (x+1)/9 + (x+1)/27 + (x+1)/81 = 56/81
<=> (27x+27)/81 + (9x+9)/81 + (3x+3)/81 + (x+1)/81 = 56/81 (quy đồng)
<=> 27x + 9x + 3x + x + 27 + 9 + 3 + 1 = 56 (khử mẫu)
<=> 40x = 56- 40 = 16
<=> x = 16/40 = 2/5
~ hok tốt ~
#)Giải :
\(\left(y+\frac{1}{3}\right)+\left(y+\frac{1}{9}\right)+\left(y+\frac{1}{27}\right)+\left(y+\frac{1}{81}\right)=\frac{56}{81}\)
\(4y+\left(\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+\frac{1}{81}\right)=\frac{56}{81}\)
\(4y+\left(\frac{27}{81}+\frac{9}{81}+\frac{3}{81}+\frac{1}{81}\right)=\frac{56}{81}\)
\(4y+\frac{40}{81}=\frac{56}{81}\)
\(\Leftrightarrow4y=\frac{16}{81}\)
\(\Leftrightarrow y=\frac{4}{81}\)