Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Đoàn Văn Ánh

Những câu hỏi liên quan
Bùi Ngọc Tố Uyên
Xem chi tiết
Nguyễn Lê Phước Thịnh
13 tháng 11 2021 lúc 0:08

#include <bits/stdc++.h>

using namespace std;

double a,b,c,p,s;

int main()

{

cin>>a>>b>>c;

p=(a+b+c)/2;

s=sqrt(p*(p-a)*(p-b)*(p-c));

cout<<fixed<<setprecision(2)<<p;

return 0;

}

Bùi Ngọc Tố Uyên
Xem chi tiết
Nguyễn Lê Phước Thịnh
13 tháng 11 2021 lúc 0:09

1: 

uses crt;

var a,b,c,max,min:longint;

begin

clrscr;

readln(a,b,c);

max=a;

if max<b then max:=b;

if max<c then max:=c;

min:=a;

if min>c then min:=c;

if min>b then min:=b;

writeln(max,' ',min);

readln;

end.

Hiệp Đặng
Xem chi tiết
Thanh Hoàng Thanh
3 tháng 3 2022 lúc 16:14

Bài 1:

\(a)\left(x+\dfrac{2}{3}\right)^3=\dfrac{125}{64}.\\ \Leftrightarrow\left(x+\dfrac{2}{3}\right)^3=\left(\dfrac{5}{4}\right)^3.\\ \Rightarrow x+\dfrac{2}{3}=\dfrac{5}{4}.\\ \Leftrightarrow x=\dfrac{7}{12}.\)

\(b)\left(x-\dfrac{1}{2}\right)^3=\dfrac{8}{343}.\\\Leftrightarrow\left(x-\dfrac{1}{2}\right)^3=\left(\dfrac{2}{7}\right) ^3.\\ \Rightarrow x-\dfrac{1}{2}=\dfrac{2}{7}.\\ \Leftrightarrow x=\dfrac{11}{14}.\)

Bài 2:

\(a)\left(x-\dfrac{1}{3}\right)^2=\dfrac{25}{9}.\\ \Leftrightarrow\left[{}\begin{matrix}\left(x-\dfrac{1}{3}\right)^2=\left(\dfrac{5}{3}\right)^2.\\\left(x-\dfrac{1}{3}\right)^2=\left(\dfrac{-5}{3}\right)^2\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x-\dfrac{1}{3}=\dfrac{5}{3}.\\x-\dfrac{1}{3}=\dfrac{-5}{3}.\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=2.\\x=\dfrac{-4}{3}.\end{matrix}\right.\)

\(b)\left(x-\dfrac{3}{4}\right)^2=\dfrac{49}{16}.\\ \Leftrightarrow\left[{}\begin{matrix}\left(x-\dfrac{3}{4}\right)^2=\left(\dfrac{7}{4}\right)^2.\\\left(x-\dfrac{3}{4}\right)^2=\left(\dfrac{-7}{4}\right)^2.\end{matrix}\right.\) 

\(\Leftrightarrow\left[{}\begin{matrix}x-\dfrac{3}{4}=\dfrac{7}{4}.\\x-\dfrac{3}{4}=\dfrac{-7}{4}.\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{5}{2}.\\x=-1.\end{matrix}\right.\)

Bùi Ngọc Tố Uyên
Xem chi tiết
Marry Lili Potter
Xem chi tiết
Nguyễn Quỳnh Chi
Xem chi tiết
phung tuan anh phung tua...
24 tháng 12 2021 lúc 8:20

bị lỗi nhé

Hoàng Văn Nam
Xem chi tiết
Hoàng Văn Nam
Xem chi tiết
Akai Haruma
6 tháng 8 2021 lúc 23:46

Lời giải:
a.

Nếu $m=3$ thì pt trở thành:
$x^2+4x-5=0$

$\Leftrightarrow (x-1)(x+5)=0$

$\Leftrightarrow x=1$ hoặc $x=-5$

b.

Để pt có 2 nghiệm pb $x_1,x_2$ thì:

$\Delta'=4+m^2-4>0\Leftrightarrow m^2>0\Leftrightarrow m\neq 0$

PT có 2 nghiệm $(-2+m, -2-m)$

Khi đó:

\(x_2=x_1^3+4x_2^2\Leftrightarrow \left[\begin{matrix} -2+m=(-2-m)^3+4(-2+m)^2\\ -2-m=(-2+m)^3+4(-2-m)^2\end{matrix}\right.\)

\(\Leftrightarrow \left[\begin{matrix} -m^3+2m^2-29m+10=0\\ m^3-2m^2+29m+10=0\end{matrix}\right.\)

Nghiệm khá xấu, cảm giác đề cứ sai sai bạn ạ.

Dũng
Xem chi tiết
Nguyễn Lê Phước Thịnh
17 tháng 2 2022 lúc 21:53

a: Thay a=-2 vào pt, ta được:

\(-2x^2-2\cdot\left(-2-1\right)x-2+1=0\)

\(\Leftrightarrow-2x^2+6x-1=0\)

\(\Leftrightarrow2x^2-6x+1=0\)

\(\text{Δ}=\left(-6\right)^2-4\cdot2\cdot1=36-8=28>0\)

Do đó: Phương trình có hai nghiệm phân biệt là:

\(\left\{{}\begin{matrix}x_1=\dfrac{6-2\sqrt{7}}{2}=3-\sqrt{7}\\x_2=3+\sqrt{7}\end{matrix}\right.\)

b: Để phương trình có hai nghiệm phân biệt thì 

\(\left\{{}\begin{matrix}\left(-2a+2\right)^2-4a\left(a+1\right)>0\\a< >0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}4a^2-8a+4-4a^2-4a>0\\a< >0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}-12a>-4\\a< >0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a< >0\\a< \dfrac{1}{3}\end{matrix}\right.\)

 

tranthuylinh
Xem chi tiết
Thanh Quân
14 tháng 6 2021 lúc 9:55

\(A=\dfrac{2\sqrt{x}+17}{\sqrt{x+5}}=\dfrac{2\sqrt{x}+10}{\sqrt{x}+5}+\dfrac{7}{\sqrt{x}+5}=2+\dfrac{7}{\sqrt{x}+5}\) 

Để \(A\) ∈ \(Z\) thì \(\dfrac{7}{\sqrt{x}+5}\) phải ∈ \(Z\)

=> \(\sqrt{x}+5\) ∈ \(Ư\left(7\right)=\left\{-7;-1;1;7\right\}\)

# Với \(\sqrt{x}+5=-7=>\sqrt{x}=-12\)(Loại)

#Với \(\sqrt{x}+5=-1=>\sqrt{x}=-6\)(Loại)

#Với \(\sqrt{x}+5=1=>\sqrt{x}=-4\left(Loại\right)\)

#Với \(\sqrt{x}+5=7=>\sqrt{x}=2< =>x=4\left(Nhận\right)\)

Vậy \(x=4\) thì \(A\)\(Z\)

Thanh Quân
28 tháng 9 2021 lúc 15:46

\(\sqrt[3]{\dfrac{a^4}{b^2\left(a^2-ab+b^2\right)}}+\sqrt[3]{\dfrac{b^4}{c^2\left(b^2-bc+c^2\right)}}\sqrt[3]{\dfrac{c^4}{a^2\left(c^2-ac+b^2\right)}}\) \(\text{≥}3\)

\(Ta\) \(Có\) : \(\sqrt[3]{\dfrac{a^4}{b^2\left(a^2-ab+b^2\right)}}=\sqrt[3]{\dfrac{a^6}{ab.ab\left(a^2-ab+b^2\right)}}=\dfrac{a^2}{\sqrt[3]{ab.ab.\left(a^2-ab+b^2\right)}}\) 

\(Áp\) \(dụng\) \(bđt\) \(AM-GM\) 

\(\sqrt[3]{ab.ab\left(a^2-ab+b^2\right)}\text{≤}\)  \(\dfrac{ab+ab+a^2-ab+b^2}{3}\) 

\(=>\dfrac{a^2}{\sqrt[3]{ab.ab\left(a^2-ab+b^2\right)}}\) \(\text{≥}\) \(\dfrac{3a^2}{a^2+ab+b^2}\) \(Hay\) \(\sqrt[3]{\dfrac{a^4}{b^2\left(a^2-ab+b^2\right)}}\text{≥}\dfrac{3a^2}{a^2+ab+b^2}\)

Tương tự ta cũng có : 

\(\sqrt[3]{\dfrac{b^4}{c^2\left(b^2-bc+c^2\right)}}\text{≥}\dfrac{3b^2}{b^2+bc+c^2}\) 

\(\sqrt[3]{\dfrac{c^4}{a^2\left(c^2-ac+a^2\right)}}\text{≥}\dfrac{3c^2}{a^2+ac+c^2}\)

\(=>\text{​​}\text{​​}\)\(\sqrt[3]{\dfrac{a^4}{b^2\left(a^2-ab+b^2\right)}}+\sqrt[3]{\dfrac{b^4}{c^2\left(b^2-bc+c^2\right)}}\sqrt[3]{\dfrac{c^4}{a^2\left(c^2-ac+b^2\right)}}\)  \(\text{≥}\) \(3\left(\dfrac{a^2}{a^2+ab+b^2}+\dfrac{b^2}{b^2+bc+c^2}+\dfrac{c^2}{a^2+ac+c^2}\right)\) 

Cần c/m \(\left(\dfrac{a^2}{a^2+ab+b^2}+\dfrac{b^2}{b^2+bc+c^2}+\dfrac{c^2}{a^2+ac+c^2}\right)\) ≥ \(1\) 

Ta có : \(\dfrac{a^2}{a^2+ab+b^2}\text{≥}\dfrac{1}{3}\) 

\(< =>3a^2\text{≥}a^2+ab+b^2\) \(< =>2a^2-b\left(a+b\right)\text{≥}0\) (1)

Lại có : \(a^2\text{≥}-b\left(a+b\right)\) (2)

Từ (1) và (2) => \(\dfrac{a^2}{a^2+ab+b^2}\text{≥}\dfrac{1}{3}\)

Tương tự ta cũng có :

 \(\dfrac{b^2}{b^2+bc+c^2}\text{≥}\dfrac{1}{3}\) 

\(\dfrac{c^2}{a^2+ac+c^2}\text{≥}\dfrac{1}{3}\)

Do đó \(\dfrac{a^2}{a^2+ab+b^2}+\dfrac{b^2}{b^2+bc+c^2}+\dfrac{c^2}{a^2+ac+c^2}\text{≥}1\)

Suy ra :  \(\sqrt[3]{\dfrac{a^4}{b^2\left(a^2-ab+b^2\right)}}+\sqrt[3]{\dfrac{b^4}{c^2\left(b^2-bc+c^2\right)}}\sqrt[3]{\dfrac{c^4}{a^2\left(c^2-ac+b^2\right)}}\) \(\text{≥}\) \(3\) 

Đẳng thức xảy ra <=> \(a=b=c=1\)