Tìm nhiệm nguyên dương của phương trình : 5x + 2*5y + 5z = 4500 với x<y<z
Tìm nghiệm nguyên dương của phương trình :
5x + 2.5y + 5z = 4500 với x < y < z
Lời giải:
$4500=2^2.3^2.5^3$
$x< y< z$ nên $x=3$.
Khi đó: $5^3+2.5^y+5^z=4500$
$\Rightarrow 2.5^y+5^z=4375$
$5^y(2+5^{z-y})=4375=5^4.7$
Vì $2+5^{z-y}\not\vdots 5$ với mọi $y< z$ nên $5^y=5^4\Rightarrow y=4$
$\Rightarrow 2+5^{z-y}=7$
$5^{z-4}=5\Rightarrow z-4=1\Rightarrow z=5$
Tìm nghiệm nguyên dương của phương trình sau:
(2x + 5y + 1)(2|x| + y + x2 + x) = 105
Do VP là số lẻ
<=> 2x + 5y + 1 là số lẻ và \(2^{\left|x\right|}+y+x^2+x\) là số lẻ
<=> y chẵn và \(2^{\left|x\right|}+y+x\left(x+1\right)\) là số lẻ
=> \(2^{\left|x\right|}\) là số lẻ (do y chẵn và x(x+1) chẵn)
=> x = 0
PT <=> \(\left(5y+1\right)\left(1+y\right)=105\)
<=> y = 4 (thử lại -> thỏa mãn)
KL: x = 0; y = 4
a) Tìm các số nguyên dương x,y thỏa mãn 2(x+y)+16=3xy
b)Tìm các số nguyên dương x,y thỏa mãn x2 - 2y2 = 5
c) CMR: đa thức B = 5x2 + 5y2 + 5z2 + 6xy -8xz - 8yz
d) CM số A = 99...9800...01 ( có n chữ số 9 và n chữ số 0) là số chính phương
Giải hệ phương trình có các phương trình sau : 5x+5y=30; y+5z=12; 5z+3x= 22
\(\hept{\begin{cases}5x+5y=30\\y+5z=12\\3x+5z=22\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=6-y\\y+5z=12\\3x+5z=22\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}y+5z=12\\3\left(6-y\right)+5z=22\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}y+5z=12\\-3y+5z=4\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}y+5z=12\\3y-5z=-4\end{cases}}\)
\(\Rightarrow4y=8\Rightarrow y=2\)
Thay giá trị của y vào phương trình: -3y + 5z = 4
\(-3\times2+5z=4\)
\(\Rightarrow z=2\)
Thế giá trị của y vào phương trình: x = 6 - y
\(\Rightarrow x=4\)
Tìm nghiệm nguyên dương của phương trình : 5xyz - x - 5y - 7z - 10 = 0
Cho ba số thực x, y, z dương. Tìm giá trị nhỏ nhất của biểu thức: \(P=\dfrac{\sqrt{2x^2+2xy+5y^2}}{3x+y+5z}+\dfrac{\sqrt{2y^2+2yz+5z^2}}{3y+z+5x}+\dfrac{\sqrt{2z^2+2xz+5x^2}}{3z+x+5y}\)
\(2x^2+2xy+5y^2=\left(x+2y\right)^2+\left(x-y\right)^2\ge\left(x+2y\right)^2\)
\(\Rightarrow P\ge\dfrac{x+2y}{3x+y+5z}+\dfrac{y+2z}{3y+z+5x}+\dfrac{z+2x}{3x+x+5y}\)
\(\Rightarrow P\ge\dfrac{\left(x+2y\right)^2}{\left(x+2y\right)\left(3x+y+5z\right)}+\dfrac{\left(y+2z\right)^2}{\left(y+2z\right)\left(3y+z+5x\right)}+\dfrac{\left(z+2x\right)^2}{\left(z+2x\right)\left(3x+x+5y\right)}\)
\(\Rightarrow P\ge\dfrac{\left(x+2y\right)^2}{3x^2+2y^2+7xy+5xz+10yz}+\dfrac{\left(y+2z\right)^2}{3y^2+2z^2+7yz+5xy+10xz}+\dfrac{\left(z+2x\right)^2}{3z^2+2x^2+7xz+5yz+10xy}\)
\(\Rightarrow P\ge\dfrac{\left(x+2y+y+2z+z+2x\right)^2}{5\left(x^2+y^2+z^2\right)+22\left(xy+xz+yz\right)}\)
\(\Rightarrow P\ge\dfrac{9\left(x+y+z\right)^2}{5\left(x+y+z\right)^2+12\left(xy+xz+yz\right)}\ge\dfrac{9\left(x+y+z\right)^2}{5\left(x+y+z\right)^2+\dfrac{12\left(x+y+z\right)^2}{3}}\)
\(\Rightarrow P\ge1\)
\(\Rightarrow P_{min}=1\) khi \(x=y=z\)
TÌm nghiệm nguyên dương của phương trình
5xyz = x +5y + 7z +10
TÌm nghiệm nguyên dương của phương trình
5xyz = x +5y + 7z +10
tìm nghiệm nguyên của phương trình 5x^2+5y^2+6xy-20x-20y+24=0