chứng minh rằng n2+ n và 2n + 1 là hai số nguyên tố cùng nhau
Chứng minh: n2 + n và 2n+1 là hai số nguyên tố cùng nhau.
1.Chứng tỏ rằng hai số lẻ liên tiếp là hai số nguyên tố cùng nhau
2.Chứng minh rằng với mọi số tự nhiên , các số sau là các số nguyên tố cùng nhau.
a) n+1 và n+2 b)2n+2 và 2n+3
c)2n+1 và n+1 d)n+1 và 3n+4
Bài 1: Gọi hai số lẻ liên tiếp là $2k+1$ và $2k+3$ với $k$ tự nhiên.
Gọi $d=ƯCLN(2k+1, 2k+3)$
$\Rightarrow 2k+1\vdots d; 2k+3\vdots d$
$\Rightarrow (2k+3)-(2k+1)\vdots d$
$\Rightarrow 2\vdots d\Rightarrow d=1$ hoặc $d=2$
Nếu $d=2$ thì $2k+1\vdots 2$ (vô lý vì $2k+1$ là số lẻ)
$\Rightarrow d=1$
Vậy $2k+1,2k+3$ nguyên tố cùng nhau.
Ta có đpcm.
Bài 2:
a. Gọi $d=ƯCLN(n+1, n+2)$
$\Rightarrow n+1\vdots d; n+2\vdots d$
$\Rightarrow (n+2)-(n+1)\vdots d$
$\Rightarrow 1\vdots d\Rightarrow d=1$
Vậy $(n+1, n+2)=1$ nên 2 số này nguyên tố cùng nhau.
b.
Gọi $d=ƯCLN(2n+2, 2n+3)$
$\Rightarrow 2n+2\vdots d; 2n+3\vdots d$
$\Rightarrow (2n+3)-(2n+2)\vdots d$ hay $1\vdots d$
$\Rightarrow d=1$.
Vậy $(2n+2, 2n+3)=1$ nên 2 số này nguyên tố cùng nhau.
Bài 2:
c.
Gọi $d=ƯCLN(2n+1, n+1)$
$\Rightarrow 2n+1\vdots d; n+1\vdots d$
$\Rightarrow 2(n+1)-(2n+1)\vdots d$
$\Rightarrow 1\vdots d\Rightarrow d=1$
Vậy $ƯCLN(2n+1, n+1)=1$ nên 2 số này nguyên tố cùng nhau.
d.
Gọi $d=ƯCLN(n+1, 3n+4)$
$\Rightarrow n+1\vdots d; 3n+4\vdots d$
$\Rightarrow 3n+4-3(n+1)\vdots d$
$\Rightarrow 1\vdots d\Rightarrow d=1$
Vậy $ƯCLN(n+1, 3n+4)=1$
$\Rightarrow$ 2 số này nguyên tố cùng nhau.
Chứng minh rằng:
a, Hai số tự nhiên liên tiếp (khác 0) là hai số nguyên tố cùng nhau
b, Hai số lẻ liên tiếp là hai số nguyên tố cùng nhau
c, 2n+1 và 3n+1 với n ∈ N là hai số nguyên tố cùng nhau
a, Gọi d ∈ ƯC(n,n+1) => (n+1) – 1 ⋮ d => 1 ⋮ d => d = 1. Vậy n, n+1 là hai số nguyên tố cùng nhau
b, Gọi d ∈ ƯC(2n+1,2n+3) => (2n+3) – (2n+1) ⋮ d => 2 ⋮ d => d ∈ {1;2}. Vì d là số lẻ => d = 1 => dpcm
c, Gọi d ∈ ƯC(2n+1,3n+1) => 3.(2n+1) – 2.(3n+1) ⋮ d => 1 ⋮ d => d = 1 => dpcm
Chứng minh rằng:
a) Hai số tự nhiên liên tiếp (khác 0) là hai số nguyên tố cùng nhau.
b) Hai số lẻ liên tiếp là hai số nguyên tố cùng nhau.
c) 2n + 1 và 3n + 1 với n ∈ N là hai số nguyên tố cùng nhau
Đặt (3n+1,2n+1)=₫
=>(2(3n+1(,3(2n+1)=₫
=>(6n+2,6n+3)=₫=>6n+2...₫,6n+3...₫
=>6n+3-6n+2...₫=>1...₫=>₫=1
=>(3n+1,2n+1)=1 nên 3n+1,2n+1laf 2 snt cùng nhau
Chứng minh rằng:
a) Hai số tự nhiên lien tiếp khác 0 là hai số nguyên tố cùng nhau
b) Hi số ller liên tiếp là hai số nguyên tố cùng nhau
c) 2n+1 và 3n + 1 (n thuộc N) là hai số nguyên tố cùng nhau
d) 2n+5 và 3n+7 nguyên tố cùng nhau
a)Vì hai số tự nhiên liên tiếp có UC là 1 nên =>Hai số tự nhiên lien tiếp khác 0 là hai số nguyên tố cùng nhau
b)Vì hai số tự nhiên liên tiếp có UC là 1 nên =>Hai số tự nhiên lien tiếp là hai số nguyên tố cùng nhau
tick nha
chứng minh rằng:2n+1 và n.(n+1) là hai số nguyên tố cùng nhau
Chứng minh rằng 2n+ 1 và 3n + 1 là hai số nguyên tố cùng nhau ( với n thuộc N )
Chứng minh rằng 2n+1 và 3n+1 là hai số nguyên tố cùng nhau(với n \(\notin N\)
Gọi \(k\) là \(ƯCLN\left(2n+1,3n+1\right)\)
Khi đó:
\(\left\{{}\begin{matrix}2n+1⋮k\\3n+1⋮k\end{matrix}\right.\)
\(\Rightarrow\left(3n+1\right)-\left(2n+1\right)⋮k\)
\(\Rightarrow1⋮k\) hay \(k=1\) (đpcm)
Gọi d là ƯCLN(2n+1;3n+1)
Ta có:2n+1 chia hết cho d
3n+1 chia hết cho d
Suy ra (3n+1)-(2n+1) chia hết cho d
Suy ra 3n-2n chia hết cho d
Suy ra 1 chia hết cho d
Suy ra 2n+1 và 3n+1 là 2 số nguyên tố cùng nhau
gọi d là ước chung lớn nhất của 2n+1 và 3n+1
suy ra 2n+1 và 3n+1 chia hết cho d (1)
suy ra (3n+1)-(2n+1) chia hết cho d
suy ra n chia hết cho d (2)
từ (1) (2) suy ra 1 chia hết cho d
suy ra 2n+1 và 3n+1 nguyên tố cùng nhau
chứng minh rằng: 2n+1 và 3n+1 là hai số nguyên tố cùng nhau. ( với n thuộc N
gải:
ta gọi x là ƯCLN của 2n+1 và 3n+1
suy ra: (2n+1) chia hết cho x
(3n+1) chia hết cho x
suy ra: [3(2n+1)-2(3n+1)] chia hết cho x
hay 1 chia hết cho x
suy ra: x e Ư(1)
Ư(1)={1}
do đó x=1
nên ƯCLN(2n+1;3n+1)=1
vì ƯCLN của 2n+1 và 3n+1 là 1 nên hai số này là hai số nguyên tố cùng nhau