Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Bui Thi Thu Phuong
Xem chi tiết
Nguyễn Tấn Phát
Xem chi tiết
Girl
14 tháng 3 2019 lúc 17:33

\(A=\frac{3x^2-2x+3}{x^2+1}\Leftrightarrow A\left(x^2+1\right)=3x^2-2x+3\)

\(\Leftrightarrow Ax^2+A-3x^2+2x-3=0\)

\(\Leftrightarrow x^2\left(A-3\right)+2x+\left(A-3\right)=0\)

\(\Delta'=1-\left(A-3\right)^2\ge0\Leftrightarrow\left(1+A-3\right)\left(1-A+3\right)\ge0\)

\(\Leftrightarrow\left(4-A\right)\left(A-2\right)\ge0\Leftrightarrow2\le A\le4\)

Nguyễn Bá Anh Dũng
Xem chi tiết
Huỳnh Cẩm
Xem chi tiết
Đinh Thùy Linh
29 tháng 6 2016 lúc 23:40

Câu hỏi của Huỳnh Cẩm - Toán lớp 9 - Học toán với OnlineMath

Thy Châu Nghiêm
Xem chi tiết
Nguyễn Lê Phước Thịnh
11 tháng 7 2023 lúc 23:14

a: (2x-3)^2>=0

=>-(2x-3)^2<=0

=>D<=-3

Dấu = xảy ra khi x=3/2

b: (2x-5)^2>=0

(y+1/2)^2>=0

=>(2x-5)^2+(y+1/2)^2>=0

=>D>=2022

Dấu = xảy ra khi x=5/2 và y=-1/2

Mashiro Rima
Xem chi tiết
Đạt
5 tháng 8 2016 lúc 1:15

\(B=\frac{x^2+2x+3}{x^2+3}=1+\frac{2x}{x^2+3}\le1+\frac{2x}{2x\sqrt{3}}=\frac{\sqrt{3}+1}{\sqrt{3}}\)

Dấu bằng xảy ra khi và chỉ khi \(x^2+3=2x\sqrt{3}\Leftrightarrow\left(x-\sqrt{3}\right)^2=0\Leftrightarrow x=\sqrt{3}\)

\(B=\frac{x^2+2x+3}{x^2+3}=1+\frac{2x}{x^2+3}\ge1+\frac{-\frac{x^2+3}{\sqrt{3}}}{x^2+3}=1-\frac{1}{\sqrt{3}}=\frac{\sqrt{3}-1}{\sqrt{3}}\)

Dấu bằng xảy ra khi và chỉ khi \(2x=-\frac{x^2+3}{\sqrt{3}}\Leftrightarrow2x\sqrt{3}=-\left(x^2+3\right)\Leftrightarrow\left(x+\sqrt{3}\right)^2=0\Leftrightarrow x=-\sqrt{3}\)

Mashiro Rima
6 tháng 8 2016 lúc 20:44

Có bạn nào có cách giải dễ hiểu hơn không? Giúp mình với!!!

An Nguyễn Đức
24 tháng 11 2017 lúc 21:13

bđt cô-si đó bạn :)) 

Nguyễn Võ Thảo Vy
Xem chi tiết
Dương Lam Hàng
17 tháng 1 2018 lúc 15:11

Ta có: \(M=\frac{x^2+2x+3}{x^2+2}=\frac{2.\left(x^2+2\right)-\left(x^2-2x+1\right)}{x^2+2}\)

                                                  \(=\frac{2.\left(x^2+2\right)}{x^2+2}-\frac{x^2-2x+1}{x^2+2}=2-\frac{\left(x-1\right)^2}{x^2+2}\le2\)

Dấu "=" xảy ra khi \(x-1=0\Rightarrow x=1\)

Vậy Mmax = 2 khi x = 1

Law Trafargal
Xem chi tiết
Akai Haruma
3 tháng 10 2019 lúc 14:53

Lời giải:

\(B=\frac{x^2+2x+3}{x^2+2}\Rightarrow B(x^2+2)=x^2+2x+3\)

\(\Leftrightarrow x^2(B-1)-2x+(2B-3)=0(*)\)

Vì biểu thức $B$ xác định nên $(*)$ luôn có nghiệm

$\Rightarrow \Delta'=1-(B-1)(2B-3)\geq 0$

$\Leftrightarrow -2B^2+5B-2\geq 0$

$\Leftrightarrow (1-2B)(B-2)\geq 0$

$\Leftrightarrow \frac{1}{2}\leq B\leq 2$

Vậy $B_{\min}=\frac{1}{2}; B_{\max}=2$

Akai Haruma
6 tháng 10 2019 lúc 18:07

Lời giải:

\(B=\frac{x^2+2x+3}{x^2+2}\Rightarrow B(x^2+2)=x^2+2x+3\)

\(\Leftrightarrow x^2(B-1)-2x+(2B-3)=0(*)\)

Vì biểu thức $B$ xác định nên $(*)$ luôn có nghiệm

$\Rightarrow \Delta'=1-(B-1)(2B-3)\geq 0$

$\Leftrightarrow -2B^2+5B-2\geq 0$

$\Leftrightarrow (1-2B)(B-2)\geq 0$

$\Leftrightarrow \frac{1}{2}\leq B\leq 2$

Vậy $B_{\min}=\frac{1}{2}; B_{\max}=2$

Law Trafargal
Xem chi tiết
Nguyễn Việt Lâm
7 tháng 10 2019 lúc 8:34

\(B=\frac{2x^2+4x+6}{2\left(x^2+2\right)}=\frac{x^2+2}{2\left(x^2+2\right)}+\frac{x^2+4x+4}{2\left(x^2+2\right)}=\frac{1}{2}+\frac{\left(x+2\right)^2}{2\left(x^2+2\right)}\ge\frac{1}{2}\)

\(B=\frac{2\left(x^2+2\right)}{x^2+2}-\frac{x^2-2x+1}{x^2+2}=2-\frac{\left(x-1\right)^2}{x^2+2}\le2\)