Giá trị của y thõa mãn: Y x 2 + y/2 - 10
Giá trị của y thõa mãn:
Y x 2 + y/2 - 10
Tìm các giá trị x, y thõa mãn hệ: \(\hept{\begin{cases}x^4+y^2\le1\\x^5+y^3\ge1\end{cases}}\)
Cho hệ pt: \(\hept{\begin{cases}mx+y=5\\2x-y=-2\end{cases}}\)
Xác định giá trị của m để nghiệm (x1; y1) của hệ pt thõa mãn điều kiện x1+y1=1
Cho x , y , z dương thay đổi thõa mãn x + y +z = 3 . Tìm giá trị nhỏ nhất của \(P=\frac{1}{\sqrt{x}}+\frac{1}{\sqrt{y}}+\frac{1}{\sqrt{z}}\) .
Theo BĐT Bunhiacopski ta có:
\(\left(1^2+1^2+1^2\right)\left[\left(\sqrt{x}\right)^2+\left(\sqrt{y}\right)^2+\sqrt{z}^2\right]\ge\left(\sqrt{x}+\sqrt{y}+\sqrt{z}\right)^2\)
\(\Leftrightarrow3\left(x+y+z\right)\ge\left(\sqrt{x}+\sqrt{y}+\sqrt{z}\right)^2\)
\(\Leftrightarrow\sqrt{x}+\sqrt{y}+\sqrt{z}\le\sqrt{3\left(x+y+z\right)}=3\)
Theo BĐT Cauchy-Schwarz dạng Engle ( hay là BCS ) ta có:
\(P=\frac{1}{\sqrt{x}}+\frac{1}{\sqrt{y}}+\frac{1}{\sqrt{z}}\ge\frac{9}{\sqrt{x}+\sqrt{y}+\sqrt{z}}\ge\frac{9}{3}=3\)
Dấu "=" xảy ra tại \(x=y=z=1\)
PS:Hôm nay rảnh quá nên viết cả tên BĐT ra,bình thường thì mik ko viết:v
Cho 2 đa thức
A= 4x3- 3xy + x + 2
B= 3x3 - 3xy +3x -3
Chứng tỏ không có giá trị nào của biến x thõa mãn để 2 giá trị của 2 đa thức A và B bằng nhau
PT A = B
<=> 4x3 - 3xy + x + 2 = 3x3 - 3xy + 3x - 3
<=> x3 - 2x + 5 = 0
Phương trình bậc 3 luôn có ít nhất 1 nghiệm mà.
Cho các số không âm x,y,z thõa x+y+z=3. Tìm giá trị lớn nhất của
\(A=\sqrt{1+x^2}+\sqrt{1+y^2}+\sqrt{1+z^2}+3\left(\sqrt{x}+\sqrt{y}+\sqrt{z}\right)\) .
Cho các số dương x, y thoả mãn \(x\sqrt{x}+y\sqrt{y}=x^2+y^2=x^2\sqrt{x}+y^2\sqrt{y}.\)Tính giá trị của x + y .
Lời giải:
Điều kiện đề bài:
\(\Rightarrow \left\{\begin{matrix} x^2+y^2-x\sqrt{x}-y\sqrt{y}=0\\ x^2\sqrt{x}+y^2\sqrt{y}-x^2-y^2=0\end{matrix}\right.\)
\(\Leftrightarrow \left\{\begin{matrix} x\sqrt{x}(\sqrt{x}-1)+y\sqrt{y}(\sqrt{y}-1)=0\\ x^2(\sqrt{x}-1)+y^2(\sqrt{y}-1)=0\end{matrix}\right.\)
\(\Rightarrow (x^2-x\sqrt{x})(\sqrt{x}-1)+(y^2-y\sqrt{y})(\sqrt{y}-1)=0\) (lấy vế 2 trừ vế 1)
\(\Leftrightarrow x\sqrt{x}(\sqrt{x}-1)^2+y\sqrt{y}(\sqrt{y}-1)^2=0\)
Vì mỗi số hạng trên đều không âm với mọi $x,y>0$ nên để tổng của chúng bằng $0$ thì:
\(x\sqrt{x}(\sqrt{x}-1)^2=y\sqrt{y}(\sqrt{y}-1)^2=0\)
\(\Rightarrow x=y=1\Rightarrow x+y=2\)
Cho các số x, y thỏa mãn 36x2+16y2\(=\)9. Tìm giá trị lớn nhất, giá trị nhỏ nhất của biểu thức P= -2x+y
\(P^2=\left(-2x+y\right)^2=\left(\frac{-1}{3}.6x+\frac{1}{4}.4y\right)^2\)
\(\Rightarrow P^2\le\left[\left(-\frac{1}{3}\right)^2+\left(\frac{1}{4}\right)^2\right]\left[\left(6x\right)^2+\left(3y\right)^2\right]=\frac{13}{36}.\left(36x^2+16y^2\right)=\frac{13}{4}\)
\(\Rightarrow\frac{-\sqrt{13}}{2}\le P\le\frac{\sqrt{13}}{2}\)
cho hàm số y =ax\(^2\).biết rằng khi x =5 thì y =75/2
a)tính giá trị của y khi x= -3
b)tính các giá trị của x khi y =15
c)tìm GTLN,GTNN của y khi x biến đổi thỏa mãn điều kiện -4\(\le x\le2\)