Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Khách vãng lai
Xem chi tiết
SENSEIGOJO DOANH
Xem chi tiết
Nguyễn Lê Phước Thịnh
31 tháng 12 2023 lúc 19:15

a: Xét (O) có

MA,MB là các tiếp tuyến

Do đó; MA=MB

=>M nằm trên đường trung trực của AB(1)

Ta có: OA=OB

=>O nằm trên đường trung trực của AB(2)

Từ (1) và (2) suy ra OM là đường trung trực của AB

=>MO\(\perp\)AB tại H và H là trung điểm của AB

b: Ta có: ΔONC cân tại O

mà OI là đường trung tuyến

nên OI\(\perp\)NC tại I

Xét ΔOAM vuông tại A có AH là đường cao

nên \(OH\cdot OM=OA^2\)

=>\(OH\cdot OM=R^2\)

Xét ΔOIM vuông tại I và ΔOHK vuông tại H có

\(\widehat{IOM}\) chung

Do đó: ΔOIM đồng dạng với ΔOHK

=>\(\dfrac{OI}{OH}=\dfrac{OM}{OK}\)

=>\(OI\cdot OK=OH\cdot OM=R^2\)

=>\(OI\cdot OK=OC\cdot OC\)

=>\(\dfrac{OI}{OC}=\dfrac{OC}{OK}\)

Xét ΔOIC và ΔOCK có

\(\dfrac{OI}{OC}=\dfrac{OC}{OK}\)

\(\widehat{IOC}\) chung

Do đó: ΔOIC đồng dạng với ΔOCK

=>\(\widehat{OIC}=\widehat{OCK}\)

=>\(\widehat{OCK}=90^0\)

=>KC là tiếp tuyến của (O)

Trần Thị Phương Kim
Xem chi tiết

a: Xét tứ giác MBOC có \(\widehat{OBM}+\widehat{OCM}=90^0+90^0=180^0\)

nên MBOC là tứ giác nội tiếp

=>M,B,O,C cùng thuộc một đường tròn

b: Xét (O) có

MB,MC là các tiếp tuyến

Do đó: MB=MC

=>M nằm trên đường trung trực của BC(1)

Ta có: OB=OC

=>O nằm trên đường trung trực của BC(2)

Từ (1) và (2) suy ra OM là đường trung trực của BC

=>OM\(\perp\)BC tại I và I là trung điểm của BC

Xét (O) có

ΔBCD nội tiếp

BD là đường kính

Do đó: ΔBCD vuông tại C

=>BC\(\perp\)CD tại C

Ta có: BC\(\perp\)CD

BC\(\perp\)OM

Do đó: CD//OM

c: Xét (O) có

ΔBHD nội tiếp

BD là đường kính

Do đó: ΔBHD vuông tại H

=>BH\(\perp\)HD tại H

=>BH\(\perp\)DM tại H

Xét ΔBDM vuông tại B có BH là đường cao

nên \(MH\cdot MD=MB^2\left(3\right)\)

Xét ΔMBO vuông tại B có BI là đường cao

nên \(MI\cdot MO=MB^2\left(4\right)\)

Từ (3) và (4) suy ra \(MH\cdot MD=MI\cdot MO\)

=>\(\dfrac{MH}{MO}=\dfrac{MI}{MD}\)

Xét ΔMHI và ΔMOD có

\(\dfrac{MH}{MO}=\dfrac{MI}{MD}\)

góc HMI chung

Do đó: ΔMHI đồng dạng với ΔMOD

=>\(\widehat{MIH}=\widehat{MDO}=\widehat{ODH}\)

mà \(\widehat{ODH}=\widehat{OHD}\)(ΔOHD cân tại O)

nên \(\widehat{MIH}=\widehat{OHD}\)

Nguyễn Thanh Thêm
2 tháng 1 lúc 17:52

Dfg

Trần Việt Hoàng
Xem chi tiết
Nguyễn Mai Hương
1 tháng 5 2020 lúc 20:27

a.Vì MA,MB là tiếp tuyến của (O)

→ˆMAO=ˆMBO=90o→MAO^=MBO^=90o

→M,A,O,B→M,A,O,B thuộc đường tròn đường kình OM

b.Vì MA,MBMA,MB là tiếp tuyến của (O)→MO⊥AB=I→MO⊥AB=I

→OA2=OI.OM→OA2=OI.OM

Vì OF⊥CM=EOF⊥CM=E

→ˆFAC=ˆFEC=90o→◊AFCE,◊MAEO→FAC^=FEC^=90o→◊AFCE,◊MAEO nội tiếp

→M,A,E,O,B→M,A,E,O,B cùng thuộc một đường tròn

→ˆFCA=ˆFEA=ˆFBO→FCA^=FEA^=FBO^

→FC→FC là tiếp tuyến của (O)

Khách vãng lai đã xóa
Lê Quỳnh Chi Phạm
Xem chi tiết
Nguyễn Lê Phước Thịnh
29 tháng 12 2023 lúc 13:52

loading...

loading...

loading...

loading...

Lê Quỳnh Chi Phạm
Xem chi tiết
Nguyễn Lê Phước Thịnh
29 tháng 12 2023 lúc 13:30

loading...

loading...

loading...

loading...

Lê Quỳnh Chi Phạm
Xem chi tiết
Nguyễn Lê Phước Thịnh
28 tháng 12 2023 lúc 20:04

loading...

b: Xét (O) có

ΔCAB nội tiếp

CB là đường kính

Do đó: ΔCAB vuông tại A

=>CA\(\perp\)AB tại A

=>CA\(\perp\)BE tại A

Ta có: \(\widehat{OAE}=\widehat{OAC}+\widehat{EAC}=\widehat{OAC}+90^0\)

\(\widehat{MAC}=\widehat{MAO}+\widehat{OAC}=\widehat{OAC}+90^0\)

Do đó: \(\widehat{OAE}=\widehat{MAC}\)

Xét tứ giác CKAE có \(\widehat{CKE}=\widehat{CAE}=90^0\)

nên CKAE là tứ giác nội tiếp

=>\(\widehat{ACK}=\widehat{AEK}\)

=>\(\widehat{ACM}=\widehat{AEO}\)

Xét ΔAMC và ΔAOE có

\(\widehat{ACM}=\widehat{AEO}\)

\(\widehat{MAC}=\widehat{OAE}\)

Do đó: ΔAMC đồng dạng với ΔAOE

=>\(\dfrac{AM}{AO}=\dfrac{AC}{AE}\)

=>\(AM\cdot AE=AO\cdot AC\)

loading...

loading...

Lê Quỳnh Chi Phạm
Xem chi tiết
Nguyễn Lê Phước Thịnh
29 tháng 12 2023 lúc 13:29

loading...

loading...

loading...

loading...

Lê Quỳnh Chi Phạm
Xem chi tiết
Nguyễn Lê Phước Thịnh
28 tháng 12 2023 lúc 19:33

loading...

loading...

loading...