Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Lê Quỳnh Chi Phạm

1/ Từ điểm M ở ngoài đường tròn (O) kẻ hai tiếp tuyến MA và MB đến đường tròn O (A,B là hai tiếp điểm) MO cắt AB tại H .Kẻ đường kính BC của đường tròn (O), đường thẳng qua O vuông góc MC lần lượt cắt MC,BA tại K,E.

a) Cho OA = 9 ,OM = 15 .Tính MA và ^AMB ?(kết quả làm tròn đến phút)

b) Chứng minh MA . AE = OA . AC

c) Chứng minh EC là tiếp tuyến của (O).

                               giúp mik vs ah , mik đang cần gấppppp

Nguyễn Lê Phước Thịnh
28 tháng 12 2023 lúc 20:04

loading...

b: Xét (O) có

ΔCAB nội tiếp

CB là đường kính

Do đó: ΔCAB vuông tại A

=>CA\(\perp\)AB tại A

=>CA\(\perp\)BE tại A

Ta có: \(\widehat{OAE}=\widehat{OAC}+\widehat{EAC}=\widehat{OAC}+90^0\)

\(\widehat{MAC}=\widehat{MAO}+\widehat{OAC}=\widehat{OAC}+90^0\)

Do đó: \(\widehat{OAE}=\widehat{MAC}\)

Xét tứ giác CKAE có \(\widehat{CKE}=\widehat{CAE}=90^0\)

nên CKAE là tứ giác nội tiếp

=>\(\widehat{ACK}=\widehat{AEK}\)

=>\(\widehat{ACM}=\widehat{AEO}\)

Xét ΔAMC và ΔAOE có

\(\widehat{ACM}=\widehat{AEO}\)

\(\widehat{MAC}=\widehat{OAE}\)

Do đó: ΔAMC đồng dạng với ΔAOE

=>\(\dfrac{AM}{AO}=\dfrac{AC}{AE}\)

=>\(AM\cdot AE=AO\cdot AC\)

loading...

loading...


Các câu hỏi tương tự
Lê Quỳnh Chi Phạm
Xem chi tiết
Lê Quỳnh Chi Phạm
Xem chi tiết
Lê Quỳnh Chi Phạm
Xem chi tiết
Lê Quỳnh Chi Phạm
Xem chi tiết
Lê Quỳnh Chi Phạm
Xem chi tiết
Dương Hải Dương
Xem chi tiết
SENSEIGOJO DOANH
Xem chi tiết
Mon an
Xem chi tiết
Khách vãng lai
Xem chi tiết