Từ điểm M nằm ngoài (O) kẻ hai tiếp tuyến MA và MB với đường tròn (A, B là tiếp điểm). MO cắt AB tại I. Kẻ đường kính BC của đường tròn, MC cắt đường tròn tại điểm thứ hai là K.
a) Chứng minh I là trung điểm AB.
b) Chứng minh \(MA^2=MK.MC\) và \(\Delta MKI\) đồng dạng với \(\Delta MOC\)
c) Lấy điểm D trên cung lớn AB (DB < DA), kẻ \(BH\perp AD\) tại H. Gọi E là giao điểm của MO với (O). Qua D kẻ đường thẳng vuông góc với ED cắt tia BH tại P. Chứng minh: \(BP.OA=HP.OM\)
a: Xét (O) có
MA,MB là tiếp tuyến
=>MA=MB
mà OA=OB
nên OM là trung trực của AB
=>I là trung điểm của AB
Xét ΔMAK và ΔMCA có
góc MAK=góc MCA
góc AMK chung
=>ΔMAK đồng dạng với ΔMCA
=>MA/MC=MK/MA
=>MA^2=MC*MK=MI*MO
=>MC/MO=MI/MK
=>MC/MI=MO/MK
=>ΔMCO đồng dạng với ΔMIK