Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
dũng nguyễn tiến
Xem chi tiết
Nguyễn Lê Phước Thịnh
23 tháng 2 2022 lúc 20:25

Bài 1: 

a: \(\Leftrightarrow x^2-5x+6< =0\)

=>(x-2)(x-3)<=0

=>2<=x<=3

b: \(\Leftrightarrow\left(x-6\right)^2< =0\)

=>x=6

c: \(\Leftrightarrow x^2-2x+1>=0\)

\(\Leftrightarrow\left(x-1\right)^2>=0\)

hay \(x\in R\)

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
12 tháng 12 2017 lúc 5:34

Phan Nghĩa
15 tháng 5 2021 lúc 14:20

\(|x-6|=-5x+9\)

Xét \(x\ge6\)thì \(pt< =>x-6=-5x+9\)

\(< =>x-6+5x-9=0\)

\(< =>6x-15=0\)

\(< =>x=\frac{15}{6}\)(ktm)

Xét \(x< 6\)thì \(pt< =>x-6=5x-9\)

\(< =>4x-9+6=0\)

\(< =>4x-3=0< =>x=\frac{3}{4}\)(tm)

Vậy ...

Khách vãng lai đã xóa
Phan Nghĩa
15 tháng 5 2021 lúc 14:34

\(|x+1|=x^2+x\)

Xét \(x\ge-1\)thì \(pt< =>x+1=x^2+x\)

\(< =>x^2+x-x-1=0\)

\(< =>\left(x-1\right)\left(x+1\right)=0\)

\(< =>\orbr{\begin{cases}x=1\\x=-1\end{cases}\left(tm\right)}\)

Xét \(x< -1\)thì \(pt< =>-x-1=x^2+x\)

\(< =>x^2+2x+1=0\)

\(< =>\left(x+1\right)^2=0\)

\(< =>x=-1\left(ktm\right)\)

Vậy ...

Khách vãng lai đã xóa
nood
Xem chi tiết
Nguyễn Lê Phước Thịnh
23 tháng 2 2023 lúc 22:16

a: =>(5x+3)(x-1)=0

=>x=1 hoặc x=-3/5

b: =>(x-3)(4x-1-5x-2)=0

=>(x-3)(-x-3)=0

=>x=-3 hoặc x=3

c: =>(x+6)(3x-1+x-6)=0

=>(x+6)(4x-7)=0

=>x=7/4 hoặc x=-6

~Nguyễn Tú~
Xem chi tiết
Nguyễn Lê Phước Thịnh
6 tháng 3 2021 lúc 19:44

1) Ta có: \(x^2-4x+4=0\)

\(\Leftrightarrow\left(x-2\right)^2=0\)

\(\Leftrightarrow x-2=0\)

hay x=2

Vậy: S={2}

Nii-chan
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
19 tháng 4 2019 lúc 11:37

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
28 tháng 7 2018 lúc 10:05

Ta có: (x + 4)(5x – 1) > 5 x 2  + 16x + 2

       ⇔ 5 x 2  – x + 20x – 4 > 5 x 2  + 16x + 2

       ⇔ 5 x 2  – x + 20x – 5 x 2  – 16x > 2 + 4

       ⇔ 3x > 6

       ⇔ x > 2

Vậy tập nghiệm của bất phương trình là S = {x|x > 2}

Phương Nguyễn
Xem chi tiết
Nguyễn Linh
Xem chi tiết
Nguyễn Thái Thịnh
3 tháng 2 2022 lúc 15:52

a) \(\left(3x-2\right)\left(4x+5\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}3x-2=0\\4x+5=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{2}{3}\\x=-\dfrac{5}{4}\end{matrix}\right.\)

Vậy: \(S=\left\{\dfrac{2}{3};-\dfrac{5}{4}\right\}\)

b) \(\left(2,3x-6,9\right)\left(0,1x+2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}2,3x-6,9=0\\0,1x+2=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-20\end{matrix}\right.\)

c) \(\left(4x+2\right)\left(x^2+1\right)=0\)

Vì \(x^2+1\ge1>0\forall x\)

\(\Rightarrow4x+2=0\)

\(\Leftrightarrow x=-\dfrac{1}{2}\)

Vậy: \(S=\left\{-\dfrac{1}{2}\right\}\)

d) \(\left(2x+7\right)\left(x-5\right)\left(5x+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}2x+7=0\\x-5=0\\5x+1=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{7}{2}\\x=5\\x=-\dfrac{1}{5}\end{matrix}\right.\)

Vậy: \(S=\left\{-\dfrac{7}{2};5;-\dfrac{1}{5}\right\}\)

e) \(\left(x-1\right)\left(2x+7\right)\left(x^2+2\right)=0\)

Vì \(x^2+2\ge2>0\forall x\)

\(\Rightarrow\left(x-1\right)\left(2x+7\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\2x+7=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-\dfrac{7}{2}\end{matrix}\right.\)

f) \(\left(3x+2\right)\left(x^2-1\right)=\left(9x^2-4\right)\left(x+1\right)\)

\(\Leftrightarrow\left(3x+2\right)\left(x-1\right)\left(x+1\right)-\left(3x-2\right)\left(3x+2\right)\left(x+1\right)=0\)

\(\Leftrightarrow\left[\left(3x+2\right)\left(x+1\right)\right].\left(x-1-3x+2\right)=0\)

\(\Leftrightarrow\left(3x^2+5x+2\right)\left(-2x+1\right)=0\)

\(\Leftrightarrow\left(3x^2+3x+2x+2\right)\left(-2x+1\right)=0\)

\(\Leftrightarrow\left[3x\left(x+1\right)+2\left(x+1\right)\right]\left(-2x+1\right)=0\)

\(\Leftrightarrow\left(x+1\right)\left(3x+2\right)\left(-2x+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x+1=0\\3x+2=0\\-2x+1=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=-\dfrac{2}{3}\\x=\dfrac{1}{2}\end{matrix}\right.\)

Vậy: \(S=\left\{-1;-\dfrac{2}{3};\dfrac{1}{2}\right\}\)

Nhân Nguyễn
Xem chi tiết
Nguyễn Lê Phước Thịnh
12 tháng 2 2023 lúc 13:07

\(\Leftrightarrow\dfrac{1}{\left(x+2\right)\left(x+3\right)}+\dfrac{1}{\left(x+3\right)\left(x+4\right)}+...+\dfrac{1}{\left(x+5\right)\left(x+6\right)}=\dfrac{1}{8}\)

=>\(\dfrac{1}{x+2}-\dfrac{1}{x+3}+\dfrac{1}{x+3}-\dfrac{1}{x+4}+...+\dfrac{1}{x+5}-\dfrac{1}{x+6}=\dfrac{1}{8}\)

=>1/x+2-1/x+6=1/8

=>\(\dfrac{x+6-x-2}{\left(x+2\right)\left(x+6\right)}=\dfrac{1}{8}\)

=>x^2+8x+12=32

=>x^2+8x-20=0

=>(x+10)(x-2)=0

=>x=-10 hoặc x=2