cho tam giác ABC cân tại A gọi I là giao điểm của đường phân giác của góc B và góc C
a) tính góc BIC
b)tính góc BAI và góc CAI
Cho tam giác ABC, góc A=50 độ, I là giao điểm của 2 đường phân giác trong của góc B và góc C. K là giao điểm 2 đường phân giác ngoài của góc B và góc C
a) Tính góc BIC
b) Tính góc BKC
c) Chứng minh A, I, K thẳng hàng
a) Xét ΔABC có
\(\widehat{BAC}+\widehat{ABC}+\widehat{ACB}=180^0\)(Định lí tổng ba góc trong một tam giác)
\(\Leftrightarrow2\cdot\widehat{IBC}+2\cdot\widehat{ICB}=130^0\)
\(\Leftrightarrow\widehat{IBC}+\widehat{ICB}=65^0\)
Xét ΔIBC có
\(\widehat{BIC}+\widehat{IBC}+\widehat{ICB}=180^0\)(Định lí tổng ba góc trong một tam giác)
\(\Leftrightarrow\widehat{BIC}+65^0=180^0\)
hay \(\widehat{BIC}=115^0\)
Vậy: \(\widehat{BIC}=115^0\)
Cho tam giác ABC có góc A bằng 80 độ.Tia phân giác của góc B và góc C cắt nhau tại i
a) Tính góc BIC
b) Gọi giao điểm của BI với cạnh AC là M so sánh góc BIC,BMC và góc BAC
Mik cần gấp ai làm được thì mik cảm ơn nhiều nhé.
\(a,\widehat{BIC}=180^0-\widehat{IBC}-\widehat{ICB}=180^0-\dfrac{1}{2}\left(\widehat{ABC}+\widehat{ACB}\right)=180^0-\dfrac{1}{2}\left(180^0-\widehat{BAC}\right)=180^0-\dfrac{1}{2}\cdot100^0=130^0\)
a: \(\widehat{BIC}=180^0-\dfrac{1}{2}\left(\widehat{ABC}+\widehat{ACB}\right)\)
\(=180^0-\dfrac{1}{2}\cdot100^0=130^0\)
a: Xét ΔABD và ΔACE có
góc ABD=góc ACE
AB=AC
góc BAD chung
=>ΔABD=ΔACE
=>BD=CE
b: Xét ΔIBC có góc IBC=góc ICB
nên ΔIBC cân tại I
=>IB=IC
Xet ΔABI và ΔACI có
AB=AC
BI=CI
AI chung
=>ΔABI=ΔACI
=>góc BAI=góc CAI
góc BAC=180-2*50=80 độ
=>góc BAI=40 độ
c: Vì góc BAI+góc B=90 độ
nên AI vuông góc BC
1. Cho tam giác ABC, góc A = 120 độ, đường phân giác AD. Đường phân giác góc ngoài tại C cắt đường thẳng AB ở K. Gọi E là giao điểm của DK và AC. Tính số đo của góc BED.
2. Cho tam giác ABC có BC = 17cm, CA = 15cm, AB = 8cm. Ba đường phân giác của tam giác cắt nhau tại O. Tính tổng các khoảng cách từ O đến ba cạnh của tam giác.
3. Cho tam giác ABC vuông cân tại A, M là trung điểm của BC. Gọi D là điểm thuộc đoạn MC, H là hình chiếu của B trên AD. Chứng minh HM là tia phân giác của góc BHD.
4. Cho tam giác ABC và điểm I là giao điểm 3 đường phân giác của tam giác. Gọi H là chân đường vuông góc kẻ từ B đến AI. Chứng minh rằng góc IBH = góc ICA.
5. Cho tam giác ABC có góc B = 50 độ, góc C = 20 độ, đường cao AH. Tia phân giác của góc AHC cắt AC tại D. Vẽ tia Ax là tia đối của tia AB. Chứng minh điểm D nằm trên tia phân giác của góc ABC.
1)Tam giác ABC vuông cân tại A, đường trung tuyến AM. Gọi D là điểm thuộc đoạn thẳng MC. Gọi H là chân đường vuông góc kẻ từ B đến AD. Gọi I, K lần lượt là chân đường vuông góc kẻ từ M đến AD và BH. Chứng minh HM là tia phân giác của góc BHD.
2)Tam giác ABC có I là giao điểm các tia phân giác của các góc B và C. Gọi d là giao điểm của AI và BC. Kẻ IH vuông góc với BC( H thuộc BC). Chứng minh rằng góc BIH= góc CID.
3) Cho tam giác ABC có góc C=30 độ. Tia phân giác của góc B và đường phân giác của góc ngoài tại A cắt nhau ở E. Tính số đo góc BCE.
Diễn giải:
- Khi cộng, trừ số thập phân ta tiến hành cộng hoặc trừ các phần tương ứng của các số đó.
Ví dụ 1:
Tính 0,25 + 2,5 ta làm như sau: 5 + 0 = 5 , 2 + 5 =7, 0 + 2 = 2. Vậy 0,25 + 2,5 = 2.75
Tính 8,6 - 2,7 ta làm như sau: 6 - 7 không trừ được ta lấy 16 - 7 = 9, tiếp tục 8 - 2 trừ thêm 1 nữa tức là 8 -3 = 5. Vậy 8,6 - 2,7 = 5,9
- Với phép nhân, chia các số thập phân ta cần viết chúng dưới dạng phân số.
Bài làm
Diễn giải:
- Khi cộng, trừ số thập phân ta tiến hành cộng hoặc trừ các phần tương ứng của các số đó.
Ví dụ 1:
Tính 0,25 + 2,5 ta làm như sau:
5 + 0 = 5 , 2 + 5 =7, 0 + 2 = 2.
Vậy 0,25 + 2,5 = 2.75
Tính 8,6 - 2,7
Ta làm như sau: 6 - 7
Không trừ được ta lấy 16 - 7 = 9, tiếp tục 8 - 2 trừ thêm 1 nữa tức là 8 -3 = 5.
Vậy 8,6 - 2,7 = 5,9
1. Tam giác ABC cân tại A có góc A=100*. Lấy các điểm D và E sao cho trên cạnh BC có BD=BA, CE=CA. Tính góc DAE
2.Cho tam giác ABC cân tại góc B . Gọi BE là đường phân giác của góc ngoài tại B . C/minh BE//AC
cho tam giác ABC, các tia phân giác của góc B và C cắt nhau tại I. các tia phân giác của góc ngoài của góc B cà C cắt nhau tại K
a) tính góc BIC và góc BKC theo góc A của tam giác ABC
b) gọi giao điểm của tia BI và KC là D. tính góc BDC theo góc A của tam giác ABC
Cho tam giác ABC cân tại A có góc BAC=80 độ, kẻ đường cao BE và CD cắt nhau tại O. a) Chứng minh: tam giác EBA= tam giác DCA và tính góc ABE, góc ABC. b) Chứng minh AO là tia phân giác của góc BAC. c) Gọi BM và CN lần lượt là các tia phân giác ngoài của góc ABC và góc ACB, F là giao điểm của BM và CN. Chứng minh 3 điểm A,O,F thẳng hàng
Cho tam giác ABC gọi k là giao điểm các đường phân giác góc ngoài đỉnh B và C
a) CM: K cách đều cạnh AB va AC
b) Cho góc A=50 độ Tính góc BKC
c) CM: AK là đường phân giác của góc A
a: Kẻ KE,KD,KF lần lượt vuông góc AB,BC,AC
Xét ΔBEK vuông tại E và ΔBDK vuông tại D có
BK chung
góc EBK=góc DBK
=>ΔBEK=ΔBDK
=>KD=KE
Xet ΔCDK vuông tại D và ΔCFK vuông tại F có
CK chung
góc DCK=góc FCK
=>ΔCDK=ΔCFK
=>KD=KF=KE
=>K cách đều AB,AC
b: góc ABC+góc ACB=180-50=130 độ
góc EBC+góc FCB=360 độ-130 độ=260 độ
=>góc KBC+góc KCB=130 độ
=>góc BKC=50 độ