Tam giác nhọn ABC có góc B nhỏ hơn góc C. Gọi H là hình chiếu của A trên
BC.
a) So sánh HB và HC.
b) Lấy điểm E trên cạnh AH. Chứng minh EB < EC.
giup mik voi pls pls
cho tam giác ABC vuông tại A và có B>C.Gọi H là hình chiếu của A trên đường thẳng BC.
a)chứng minh HB<HC.
b)Trên HC lấy điểm D sao cho HD=HB GỌI E là hình chiếu của D trên đường thẳng AC và K là hình chiếu của C trên đường thẳng AD.chứng minh DE=DK
Cho tam giác ABC cân tại A, đường cao AH . Lấy điểm M, N lần lượt là hình chiếu vuông góc của H trên cạnh AB, AC.Đường thẳng qua H và song song với AC cắt cạnh AB ở D.
a) Chứng minh rằng BH =HC.
b) So sánh độ dài hai đoạn thẳng BH và HN.
c) Chứng minh rằng DH = 1/2 AB
d) Chứng minh rằng CD< AB. CA+CB 2 . Biết AB > BC, chúng minh rằng HA>2HM.
a: Xét ΔAHB vuông tại H và ΔAHC vuông tại H có
AB=AC
AH chung
=>ΔAHB=ΔAHC
=>HB=HC
c: Xet ΔABC có
H là trung điểm của BC
HD//AC
=>D là trung điểm của AB
ΔAHB vuông tại H
mà HD là trung tuyến
nên HD=AB/2
d: CD<(CA+CB)/2
=>2CD<CA+CB
=>CD<DH+HC(luôn đúng)
Bài 1;cho tam giác ABC vuông tại A( AB>AC), kẻ phân giác BF. Gọi H là hình chiếu của điểm C trên BF, trên tia đối tia HB lấy điểm E sao cho HE=HF. gọi K là hình chiếu của F trên BC. CMR
a, so sánh FA và FC
b,chứng minh tam giác EBC vuông
c, cmr: CH,FK,AB đồng quy tại 1 điểm
Bài 2:
cho tam giác ABC vuông tại A, đường cao AH. Trên cạnh BC lấy điểm D sao cho BD=AB, đuơng vuông góc với BC tại D cắt AC tại E
a, so sánh AE và DE
b,chưng minh AD la phân giác góc HAC
c,đường phân giác góc ngoài tại đỉnh C cắt đường thẳng BE tại K. Tính BKA và BKC
d, So sánh HD và DC
e,chứng minh AB+AC<BC+AH
cho tam giác abc nhọn, có góc B nhỏ hơn góc C. Gọi M là trung điểm của BC và H là hình chiếu của A lên BC
a) So sánh BH và CH
b) Chứng minh H nằm giữa C và M
Bài 2: Cho tam giác ABC có góc A>90 độ , lấy điểm M thuộc cạnh AB .
a) So sánh AC và MC
b) Chứng minh tam giác MBC là tam giác tù
c) Chứng minh AC <MC <BC
Bài 3: Cho tam giác MNP có Góc N>90 độ , trên tia đối của tia NP lấy điểm Q .
a) So sánh MN và MP
b) Chứng minh tam giác MPQlà tam giác tù.
c) Chứng minh MN<MP<MQ
Bài 4: Cho tam giác ABC có AB=3 cm, AC=4 cm
a) So sánh góc B với gócC
b) Hạ AH vuông góc với BC tại H . So sánh góc BAH và góc CAH
Bài 5: Cho tam giác ABC có AB = 5 cm, AC = 3 cm
a) So sánh góc B với góc C
b) So sánh hai góc ngoài tại các đỉnh B và C của tam giác ABC
Bài 6: Cho tam giác ABC vuông tại A có AC=2AB . Lấy điểm E trên cạnh AC sao cho
AB=AE . Trên tia đối của tia EB lấy điểm D sao cho EB=ED
a) Chứng minh tam giác ABE= tam giác CDE
b) So sánh góc ABE và góc CBE
Cho tam giác ABC có góc B › góc C. Từ A kẻ đường thẳng vuông góc với BC, ( H thuộc BC )
a, Chứng minh rằng HB ‹ HC
b, Gọi AD là tia phân giác của góc HAC. Trên cạnh AC lấy điểm E sao cho AE = AH. Chứng minh DH = DE
c, Gọi K là giao điểm của ED và AH. Chứng minh AD vuông góc với CK
a)
Xét ΔABC có \(\widehat{B}>\widehat{C}\)(gt)
mà cạnh đối diện với \(\widehat{B}\) là cạnh AC
và cạnh đối diện với \(\widehat{C}\) là cạnh AB
nên AC>AB(Định lí quan hệ giữa cạnh và góc đối diện trong tam giác)
hay AB<AC
Xét ΔABC có
BH là hình chiếu của AB trên BC
CH là hình chiếu của AC trên BC
mà AB<AC(cmt)
nên BH<CH(Định lí quan hệ giữa hình chiếu và đường xiên)
b) Xét ΔAHD và ΔAED có
AH=AE(gt)
\(\widehat{HAD}=\widehat{EAD}\)(AD là tia phân giác của \(\widehat{HAE}\))
AD chung
Do đó: ΔAHD=ΔAED(c-g-c)
Suy ra: DH=DE(hai cạnh tương ứng)
c) Ta có: ΔAHD=ΔAED(cmt)
nên \(\widehat{AHD}=\widehat{AED}\)(hai góc tương ứng)
mà \(\widehat{AHD}=90^0\)(gt)
nên \(\widehat{AED}=90^0\)
hay DE\(\perp\)AC tại E
Xét ΔHDK vuông tại H và ΔEDC vuông tại E có
DH=DE(cmt)
\(\widehat{HDK}=\widehat{EDC}\)(hai góc đối đỉnh)
Do đó: ΔHDK=ΔEDC(Cạnh góc vuông-góc nhọn kề)
Suy ra: DK=DC(hai cạnh tương ứng) và HK=EC(hai cạnh tương ứng)
Ta có: AH+HK=AK(H nằm giữa A và K)
AE+EC=AC(E nằm giữa A và C)
mà AH=AE(gt)
và HK=EC(cmt)
nên AK=AC
hay A nằm trên đường trung trực của CK(Tính chất đường trung trực của một đoạn thẳng)(1)
Ta có: DK=DC(cmt)
nên D nằm trên đường trung trực của CK(Tính chất đường trung trực của một đoạn thẳng)(2)
Từ (1) và (2) suy ra AD là đường trung trực của CK
hay AD\(\perp\)CK(Đpcm)
Cho tam giác ABC vuông tại A có BF là đường phân giác của góc B, H là hình chiếu của C trên BF. Trên tia đối của tia HB lấy điểm E sao cho HE = HF, K là hình chiếu của F trên BC. Chứng minh rằng:
a) CFE cân, AK//HC; b) So sánh FA và FC;
c) EBC vuông; d) các đường thẳng CH, FK và AB đồng quy.
a, tam giác vuông CHF=CHE (c.g.c) => CF=CE => Tam giác CEF cân tại C
gọi O là giao điểm của Ak và BF
tam giác vuông ABF=KBF ( cạnh huyền góc nhọn ) => BA=BK
BA=BK; BO chung; ABO=KBO ( BF phân giác ) => tam giác ABO=KBO (c.g.c)=> AOB=KOB ở vị trí kề bù AOB+KOB=180
=> AOB=KOB=90=> BF vuông AK
=> AK//HC ( cùng vuông BF)
b, tam giác vuông ABF=KBF => AF=FK
cạnh huyền FC > FK => FC > FA
c, gọi D là giao điểm AB;CH
tam giác BDC có BH ; AC là 2 đường cao cắt nhau tạo F
mà FK vuông BC nên DK là đường cao thứ 3 trong tam giác này
=> Ba đường thẳng CH, FK,AB đồng quy
Cho tam giác ABC cân tại A. Lấy I trên cạnh AB. Trên tia đối của IC lấy E sao cho IC=IE. Gọi H là hình chiếu của E trên AB. Chứng minh EB=AB+AH/2(Biết góc ACI= góc EBA)
Cho tam giác ABC vuông tại A có góc B lớn hơn góc C gọi H là hình chiếu của A trên đường thẳng BC Trên tia HC lấy điểm D sao cho HD = HB gọi E là hình chiếu của D sao cho HD = HB Gọi E là hình chiếu của D trên đường thẳng AC và K là hình chiếu của C trên đường thẳng AD CM a) H thuộc đoạn AC b) DE = DK