Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Đặng Khánh Duy
Xem chi tiết
Đặng Khánh Duy
Xem chi tiết
Nguyễn Lê Phước Thịnh
26 tháng 9 2020 lúc 22:01

Ta có: a+b+c+d=0

\(\Leftrightarrow b+c=-\left(a+d\right)\)

\(\Leftrightarrow\left(b+c\right)^3=-\left(a+d\right)^3\)

\(\Leftrightarrow b^3+c^3+3bc\left(b+c\right)=-\left[a^3+d^3+3ad\left(a+d\right)\right]\)

\(\Leftrightarrow b^3+c^3+3bc\left(b+c\right)=-a^3-d^3-3ad\left(a+d\right)\)

\(\Leftrightarrow a^3+b^3+c^3+d^3=-3bc\left(b+c\right)-3ad\left(a+d\right)\)

\(\Leftrightarrow a^3+b^3+c^3+d^3=-3bc\left(b+c\right)-3ad\cdot\left[-\left(b+c\right)\right]\)

\(\Leftrightarrow a^3+b^3+c^3+d^3=-3bc\left(b+c\right)+3ad\left(b+c\right)\)

\(\Leftrightarrow a^3+b^3+c^3+d^3=3\left(b+c\right)\left(ad-bc\right)\)(đpcm)

Khách vãng lai đã xóa
Đặng Khánh Duy
Xem chi tiết
Trần Xuân Mai
Xem chi tiết
Quỳnh Anh
Xem chi tiết
Nguyễn Lê Phước Thịnh
24 tháng 3 2020 lúc 16:12

Ta có: a+b+c+d=0

\(a+d=-\left(b+c\right)\)

\(\Leftrightarrow\left(a+d\right)^3=-\left(b+c\right)^3\)

\(\Leftrightarrow a^3+d^3+3ad\left(a+d\right)=-\left[b^3+c^3+3bc\left(b+c\right)\right]\)

\(\Leftrightarrow a^3+d^3+3ad\left(a+d\right)=-b^3-c^3-3bc\left(b+c\right)\)

\(\Leftrightarrow a^3+d^3+b^3+c^3=-3ad\left(a+d\right)-3bc\left(b+c\right)\)

\(\Leftrightarrow a^3+b^3+c^3+d^3=-3ad\left(a+d\right)+3bc\left(a+d\right)\)

\(\Leftrightarrow a^3+b^3+c^3+d^3=\left(a+d\right)\left(-3ad+3bc\right)\)

\(\Leftrightarrow a^3+b^3+c^3+d^3=\left(a+d\right)\cdot3\cdot\left(-ad+bc\right)\)

\(\Leftrightarrow a^3+b^3+c^3+d^3=-\left(b+c\right)\cdot3\cdot\left[-\left(ad-bc\right)\right]\)

\(\Leftrightarrow a^3+b^3+c^3+d^3=3\cdot\left(b+c\right)\cdot\left(ad-bc\right)\)(đpcm)

Khách vãng lai đã xóa
Phạm Minh Tuấn
Xem chi tiết
Võ Đông Anh Tuấn
9 tháng 9 2016 lúc 8:31

Ta có :

\(a+b+c+d=0\)

\(\Rightarrow b+c=-\left(a+d\right)\)

\(\Rightarrow\left(b+c\right)^2=\left(a+d\right)^2\)

\(\Rightarrow\left(b+c\right)^2-\left(a+d\right)^2=0\)

\(\Rightarrow b^2+c^2+2bc-a^2-d^2-2ad=0\)

Lại có :

\(a^3+b^3+c^3+d^3\)

\(=\left(a+b\right)\left(a^2+d^2-ad\right)+\left(b+c\right)\left(b^2+c^2-bc\right)\)

\(=\left(b+c\right)\left(b^2+c^2-bc\right)-\left(b+c\right)\left(a^2+d^2-ad\right)\)

\(=\left(b+c\right)\left[\left(b^2+c^2-bc\right)\left(a^2+d^2-ad\right)\right]\)

\(=\left(b+c\right)\left[\left(b^2+c^2-bc-a^2-d^2-2ad\right)+3ad-3bc\right]\)

\(=\left(b+c\right)\left[0+3\left(ad-bc\right)\right]\)

\(=3\left(b+c\right)\left(ad-bc\right)\)

Nguễn Hoài Phi
Xem chi tiết
Hoàng Lê Bảo Ngọc
13 tháng 7 2016 lúc 16:52

Ta có : \(a+b+c+d=0\Leftrightarrow a+d=-\left(b+c\right)\)

\(\Leftrightarrow\left(a+d\right)^3=-\left(b+c\right)^3\)

\(\Leftrightarrow a^3+d^3+3ad\left(a+d\right)=-\left[c^3+b^3+3bc\left(b+c\right)\right]\)

\(\Leftrightarrow a^3+b^3+c^3+d^3=-3ad\left(a+d\right)-3bc\left(b+c\right)\)

\(\Leftrightarrow a^3+b^3+c^3+d^3=3ad\left(b+c\right)-3bc\left(b+c\right)\) (vì a + d = - b - c )

\(\Leftrightarrow a^3+b^3+c^3+d^3=3\left(b+c\right)\left(ad-bc\right)\)

Mai Thị Lệ Thủy
Xem chi tiết
I ♥ Jungkook
Xem chi tiết
Aki Tsuki
24 tháng 8 2018 lúc 11:52

nhiều thế, đăng ít một thôi bạn

Aki Tsuki
24 tháng 8 2018 lúc 12:01

a/ \(A=\left(3+1\right)\left(3^2+1\right)\left(3^4+1\right)...\left(3^{64}+1\right)\)

\(2A=2\left(3+1\right)\left(3^2+1\right)\left(3^4+1\right)...\left(3^{64}+1\right)\)

\(2A=\left(3-1\right)\left(3+1\right)\left(3^2+1\right)\left(3^4+1\right)...\left(3^{64}+1\right)\)

\(2A=\left(3^2-1\right)\left(3^2+1\right)\left(3^4+1\right)...\left(3^{64}+1\right)\)

\(2A=\left(3^4-1\right)\left(3^4+1\right)...\left(3^{64}+1\right)\)

\(\Rightarrow2A=3^{128}-1\Rightarrow A=\dfrac{3^{128}-1}{2}\)

Mysterious Person
24 tháng 8 2018 lúc 12:21

e) ta dể dàng thấy được : \(a^2+b^2=\left(a+b\right)^2-2ab\)

\(\Rightarrow E=\left(a+b+c\right)^2+\left(a+b-c\right)^2-2\left(a+b\right)^2\)

\(=\left(2a+2b\right)^2-2\left(a+b+c\right)\left(a+b-c\right)-2\left(a+b\right)^2\)

\(=4\left(a+b\right)^2-2\left(\left(a+b\right)^2-c^2\right)-2\left(a+b\right)^2\)

\(=4\left(a+b\right)^2-2\left(a+b\right)^2+2c^2-2\left(a+b\right)^2=2c^2\)

g) củng sử dụng cái trên ta có : \(G=\left(a+b+c+d\right)^2+\left(a+b-c-d\right)^2+\left(a+c-b-d\right)^2+\left(a+d-b-c\right)^2\)

\(=\left(2a+2b\right)^2-2\left(a+b+c+d\right)\left(a+b-c-d\right)+\left(2a-2b\right)^2-2\left(a+c-b-d\right)\left(a+d-b-c\right)\)

\(=4\left(a+b\right)^2+4\left(a-b\right)^2-2\left(\left(a+b\right)^2-\left(c+d\right)^2\right)-2\left(\left(a-b\right)^2-\left(c-d\right)^2\right)\)

\(=4\left(\left(a+b\right)^2+\left(a-b\right)^2\right)-2\left(\left(a+b\right)^2+\left(a-b\right)^2\right)+2\left(\left(c+d\right)^2+\left(c-d\right)^2\right)\)

\(=2\left(\left(a+b\right)^2+\left(a-b\right)^2\right)+2\left(\left(c+d\right)^2+\left(c-d\right)^2\right)\)

\(=2\left(\left(2a\right)^2-2\left(a+b\right)\left(a-b\right)\right)+2\left(\left(2c\right)^2-2\left(c+d\right)\left(c-d\right)\right)\)

\(=2\left(4a^2-2\left(a^2-b^2\right)\right)+2\left(4c^2-2\left(c^2-d^2\right)\right)\)

\(=2\left(2a^2+2b^2\right)+2\left(2c^2+2d^2\right)=4\left(a^2+b^2+c^2+d^2\right)\)

bn đăng nhiều quá nên mk làm câu nào hay câu đó nha

mà nè mấy câu a;b;c;d hình như trên mạng có bn lên đó tìm nha .