Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Phạm Minh Tuấn

Cho a+b+c+d= 0

CMR : \(a^3+b^3+c^3+d^3=3\left(b+c\right)\left(ad-bc\right)\)

Le Thi Khanh Huyen
8 tháng 9 2016 lúc 21:58

Ta có :

\(a+b+c+d=0\)

\(\Rightarrow b+c=-\left(a+d\right)\)

\(\Rightarrow\left(b+c\right)^2=\left(a+d\right)^2\)

\(\Rightarrow\left(b+c\right)^2-\left(a+d\right)^2=0\)

\(\Rightarrow b^2+c^2+2bc-a^2-d^2-2ad=0\)

Lại có :

\(a^3+b^3+c^3+d^3\)

\(=\left(a+d\right)\left(a^2+d^2-ad\right)+\left(b+c\right)\left(b^2+c^2-bc\right)\)

\(=\left(b+c\right)\left(b^2+c^2-bc\right)-\left(b+c\right)\left(a^2+d^2-ad\right)\)

\(=\left(b+c\right)\left[\left(b^2+c^2-bc\right)-\left(a^2+d^2-ad\right)\right]\)

\(=\left(b+c\right)\left[\left(b^2+c^2+2bc-a^2-d^2-2ad\right)+3ad-3bc\right]\)

\(=\left(b+c\right)\left[0+3\left(ad-bc\right)\right]\)

\(=3\left(b+c\right)\left(ad-bc\right)\)

Vậy ...

Phan Cao Nguyen
8 tháng 9 2016 lúc 22:12

  Ta có : a + b +c + d = 0

                  => a + d = - b - c

                 => (a + d) = -(b + c) 

                => (a + d)3 = -(b + c)3

a3 + 3a2d + 3ad2 + d3 = -(b3 + 3b2c + 3bc2 + c3)

a3 + 3a2d + 3ad2 + d3 = -b3 - 3b2c - 3bc2 - c3

       a3 + b3 + c3 + d3 = -3a2d - 3ad2 - 3b2c - 3bc2 

       a3 + b3 + c3 + d3 = -3ad(a + d) - 3bc(b + c)

       a3 + b3 + c3 + d3 = -3ad(-b - c) - 3bc(b + c)

       a3 + b3 + c3 + d3 = 3ad(b + c) - 3bc(b + c)

       a3 + b3 + c3 + d3 = 3(b + c)(ad - bc)


Các câu hỏi tương tự
Trần Xuân Mai
Xem chi tiết
Mai Thị Lệ Thủy
Xem chi tiết
Minh Quyên Hoàng
Xem chi tiết
Mashiro Rima
Xem chi tiết
Minh Quyên Hoàng
Xem chi tiết
Yubi
Xem chi tiết
Diệu Anh Hoàng
Xem chi tiết
Diệu Anh Hoàng
Xem chi tiết
Thanh Tu Nguyen
Xem chi tiết