Cho đa thức f x =ax+ b. Chứng minh rằng không thể đồng thời có f 13 6và f 8 39.
cho đa thức f(x)=\(ax^3+bx^2+cx+d\) với các hệ số a , b , c , d là các số nguyên
Chứng minh rằng không thể đồng thời tồn tại f(7)=53 và f(3)=35
Với đa thức hệ số nguyên, xét 2 số nguyên m, n bất kì, ta có:
\(f\left(m\right)-f\left(n\right)=am^3+bm^2+cm+d-an^3-bn^2-cn-d\)
\(=a\left(m^3-n^3\right)+b\left(m^2-n^2\right)+c\left(m-n\right)\)
\(=a\left(m-n\right)\left(m^2+n^2+mn\right)+b\left(m-n\right)\left(m+n\right)+c\left(m-n\right)\)
\(=\left(m-n\right)\left[a\left(m^2+n^2+mn\right)+b\left(m+n\right)+c\right]⋮\left(m-n\right)\)
\(\Rightarrow f\left(m\right)-f\left(n\right)⋮m-n\) với mọi m, n nguyên
Giả sử tồn tại đồng thời \(f\left(7\right)=53\) và \(f\left(3\right)=35\)
Theo cmt, ta phải có: \(f\left(7\right)-f\left(3\right)⋮7-3\Leftrightarrow53-35⋮4\Rightarrow18⋮4\) (vô lý)
Vậy điều giả sử là sai hay không thể đồng thời tồn tại \(f\left(7\right)=53\) và \(f\left(3\right)=35\)
Cho đa thức f(x)= ax3+2bx2+3cx+4d với a,b,c,d nguyên.
Chứng minh rằng: không thể đồng thời tồn tại f(7)=73 và f(3)=58.
''Giúp mình với các bạn ơi!''
Ta có f(7) = a.7^3+2.b.7^2+3.c.7+4d = 343a +98b+21c+4d
Lại có f(3)= \(a.3^3+2.b.3^2+3.c.3+4.d=27a+18b+9c+4d\\ \)
Giả sử phản chứng : Nếu f(7) và f(3) đồng thời bằng 73 và 58 thì suy ra : \(f\left(7\right)-f\left(3\right)=\left(343a-27a\right)+\left(98b-18b\right)+\left(21c-9c\right)+\left(4d-4d\right)=73-58=15\)
\(\Rightarrow\)\(f\left(7\right)-f\left(3\right)=316a+90b+12c=15\)
Mà ta thấy các đơn thức chỉ có dạng chung duy nhất là 2k
\(\Rightarrow\)\(f\left(7\right)-f\left(3\right)=2k=15\)
Mà 15 ko chia hết cho 2 , suy ra giả sử sai
\(\Rightarrow\)\(\left(ĐPCM\right)\)
Chỗ "các đơn thức chỉ có dạng chung duy nhất là 2k" ấy mình thấy thay bằng:
Mà \(f\left(7\right)-f\left(3\right)=316a+90b+12c\)
\(=2\left(158a+45b+6c\right)⋮2\)
=>ĐCCM
hay hơn.
Dù sao thì cũng cho bạn !!!
cho f(x)=ax+b trong đó a;b thuộc Z chứng minh rằng không thể đồng thời có f(17)=71 và f(12)=35
Cho f(x) là 1 đa thức với hệ số nguyên a, b là 2 số nguyên .
a,Chứng minh rằng f(a)-f(b) chia hết cho a-b
b, Có thể xảy ra đồng thời f(5)=7 và f(9)=15 hay không
a) Đặt f(x)=c_1.x^n + c_2.x^(n - 1) + ... + c_(n - 1).x^2 + c_n.x
Ta có:
a^n − b^n
= (a−b).(a^(n−1) + a^(n−2).b + ... + b^(n−1))
⇒f(a) − f(b) = (a − b).P(a, b) với P(a, b) là 1 đa thức chứa a, b với hệ số nguyên
Suy ra f(a) - f(b) chia hết cho (a - b)
cho f(x) = ax+b trong đó a,b thuộc Z
Chứng minh rằng không thể đồng thời có f(17)=71 và f(12)=35
Gỉa sử f(17)=71 và f(12)=25
=>\(\begin{cases}a.17+b=71\\a.12+b=35\end{cases}\)
=> ( 17a+b)-(12a+b)=71-35
=> 17a+b-12a-b=71-35
=> 5a=36
vid a thuộc Z => 5a\(⋮\)5
=> 36 ko chiia hết cko 5
DO ĐÓ KO THỂ ĐỒNG THỜI CÓ f(17)=71 ; f(12)=35 (ĐPCM)
Giả sử f(17)=71 và f(12)=35 khi có f(x)=ax+b(a,c thuộc Z)
Ta có:
f(17)=a.17+b=71 (1)
và f(12)=a.12+b=35 (2)
Lấy (1) trừ (2) ta được:
f(17)-f(12)=(a.17+b)-(a.12+b)=17a+b-12a-b=5a=36
Vì 5a=36 => a=\(\frac{36}{5}\)(vô lí vì a là số nguyên)
Vậy f(x)=ax+b(a,c là số nguyên 0 thj không xảy ra đồng thời f(17)=71 và f(12)=35(đccm)
Cho f(x) là 1 đa thức với hệ số nguyên a, b là 2 số nguyên khác 0 , a,Chứng minh rằng f(a)-f(b) chia hết cho a-b
b, Có thể xảy ra đồng thời f(5)=7 và f(9)=15 hay không
Cho đa thức F(x) = ax^3+2bx^2+3cx+4d
với các hệ số a,b,c là các số nguyên. chứng minh rằng ko thể đồng thời tồn tại f(7)= 73 và f(3)=58
Ta có : \(f(7)=a\cdot7^3+2\cdot b\cdot7^2+3\cdot c\cdot7+4d=343a+98b+21c+4d\)
Lại có : \(f(3)=a\cdot3^3+2\cdot b\cdot3^2+3\cdot c\cdot3+4d=27a+18b+9c+4d\)
Giả sử phản chứng nếu \(f(7)\)và \(f(3)\)đồng thời bằng 73 và 58 suy ra là :
\(f(7)-f(3)=(343a-27a)+(98b-18b)+(21c-9c)+(4d-4d)=73-58=15\)
\(\Rightarrow f(7)-f(3)=316a+90b+12c=15\)
Mà ta thấy các đơn thức chỉ có dạng chung duy nhất là 2k
\(f(7)-f(3)=2k=15\)
Mà 15 ko chia hết cho 2 , suy ra giả sử sai
=> đpcm
Cho f(x) = ax+b trong đó a,b không thuộc Z
Chứng minh rằng không thể đồng thời có f(17)=71 và f(12)=35
GIÚP MIK VỚI ~.~
Cho đa thức F(x)=\(ax^2+bx+c\) với a ,b ,c là các số nguyên . Chứng tỏ rằng không thể xảy ra đồng thời f(2012)=2013 và f(2014)=2014 với mọi số nguyên a, b, c.
\(f\left(2012\right)=2012^2a+2012b+c=2013\Rightarrow c\text{ lẻ.}\)
\(f\left(2014\right)=2014^2a+2014b+c=2014\Rightarrow c\text{ chẵn.}\)
2 điều trên mâu thuẫn nên ta có đpcm.