Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
yoai0611
Xem chi tiết
Akai Haruma
30 tháng 1 2021 lúc 1:53

Bài 1:

$5a+8b\vdots 3$

$\Leftrightarrow 5a+8b-3(2b+2a)\vdots 3$

$\Leftrightarrow 5a+8b-6b-6a\vdots 3$

$\Leftrightarrow 2b-a\vdots 3$

 Ta có đpcm. 

 

Akai Haruma
30 tháng 1 2021 lúc 1:55

Bài 2. Bổ sung thêm điều kiện $n$ là số tự nhiên.

Ta có: $A=n(2n+7)(7n+7)=7n(2n+7)(n+1)$

Vì $n,n+1$ là 2 số tự nhiên liên tiếp nên sẽ tồn tại 1 số chẵn và 1 số lẻ

$\Rightarrow n(n+1)\vdots 2$

$\Rightarrow A=7n(n+1)(2n+7)\vdots 2(1)$

Mặt khác:

Nếu $n\vdots 3$ thì $A=7n(n+1)(2n+7)\vdots 3$

Nếu $n$ chia $3$ dư $1$ thì $2n+7$ chia hết cho $3$ 

$\Rightarrow A\vdots 3$

Nếu $n$ chia $3$ dư $2$ thì $n+1$ chia hết cho $3$

$\Rightarrow A\vdots 3$

Tóm lại $A\vdots 3(2)$

Từ $(1);(2)$ mà $(2,3)=1$ nên $A\vdots (2.3)$ hay $A\vdots 6$

Nguyễn Thu Huyền
Xem chi tiết
Dinh Nguyet Dan
Xem chi tiết
Trà My
1 tháng 10 2016 lúc 17:57

Đề sai rồi bạn

Nếu ta thử n=0 thôi ta sẽ có:

 \(\left(7n-2\right)^2-\left(2n-7\right)^2=\left(-2\right)^2-\left(-7\right)^2=4-49=-45\) không chia hết cho 7 :(

Phan Văn Khải
30 tháng 10 2021 lúc 18:40

em chịu

Khách vãng lai đã xóa
Blue Frost
Xem chi tiết
Blue Frost
Xem chi tiết
Đinh quang hiệp
24 tháng 6 2018 lúc 13:53

6   \(n^5+5n=n^5-n+6n=n\left(n^4-1\right)+6n=n\left(n^2-1\right)\left(n^2+1\right)+6n\)

\(=n\left(n-1\right)\left(n+1\right)\left(n^2+1\right)+6n\)

vì n,n-1 là 2 số nguyên lien tiếp  \(\Rightarrow n\left(n-1\right)⋮2\Rightarrow n\left(n-1\right)\left(n+1\right)\left(n^2+1\right)⋮2\)

  n,n-1,n+1 là 3 sô nguyên liên tiếp \(\Rightarrow n\left(n-1\right)\left(n+1\right)⋮3\Rightarrow n\left(n-1\right)\left(n+1\right)\left(n^2+1\right)⋮3\)

\(\Rightarrow n\left(n-1\right)\left(n+1\right)\left(n^2+1\right)⋮2\cdot3=6\)

\(6⋮6\Rightarrow6n⋮6\Rightarrow n\left(n-1\right)\left(n+1\right)\left(n^2+1\right)-6n⋮6\Rightarrow n^5+5n⋮6\)(đpcm)

7   \(n\left(2n+7\right)\left(7n+1\right)=n\left(2n+7\right)\left(7n+7-6\right)=7n\left(n+1\right)\left(2n+7\right)-6n\left(2n+7\right)\)

\(=7n\left(n+1\right)\left(2n+4+3\right)-6n\left(2n+7\right)\)

\(=7n\left(n+1\right)\left(2n+4\right)+21n\left(n+1\right)-6n\left(2n+7\right)\)

\(=14n\left(n+1\right)\left(n+2\right)+21n\left(n+1\right)-6n\left(2n+7\right)\)

n,n+1,n+2 là 3 sô nguyên liên tiếp dựa vào bài 6 \(\Rightarrow n\left(n+1\right)\left(n+2\right)⋮6\Rightarrow14n\left(n+1\right)\left(n+2\right)⋮6\)

\(21⋮3;n\left(n+1\right)⋮2\Rightarrow21n\left(n+1\right)⋮3\cdot2=6\)

\(6⋮6\Rightarrow6n\left(2n+7\right)⋮6\)

\(\Rightarrow14n\left(n+1\right)\left(n+2\right)+21n\left(n+1\right)-6n\left(2n+7\right)⋮6\)

\(\Rightarrow n\left(2n+7\right)\left(7n+1\right)⋮6\)(đpcm)

Lê Quang Tuấn Kiệt
24 tháng 6 2018 lúc 12:35

......................?

mik ko biết

mong bn thông cảm 

nha ................

Mèo tinh nghịch
Xem chi tiết
soyeon_Tiểu bàng giải
22 tháng 7 2016 lúc 15:06

(7n - 2)2 - (2n - 7)2

= (7n - 2 + 2n - 7).(7n - 2 - 2n + 7)

= (9n - 9).(9n + 5)

= 9.(n - 1).(9n + 5) chia hết cho 9 ( đpcm)

Bùi Tiến Mạnh
22 tháng 7 2016 lúc 15:38

Ta có: (7n-2)2 -(2n-7)= (7n-2 + 2n-7) .(7n-2 - 2n-7)

                                = (9n-9) . ((5n+(-9))

Ta có n là số nguyên, nếu ta thế 1 số nguyên nào vào hằng đẳng thức trên thì chắc chắn kết quả sẽ chia hết cho 9

 Vd : ( 9.7-9).((5.7+(-9))= 54.26= 1404 chia hết cho 9 => (7n-2)2 -(2n-7)2 luôn chia hết cho 9 với mọi giá trị của n là giá trị nguyên .

Son Nguyen
Xem chi tiết
Hoàng Thị Ngọc Anh
9 tháng 7 2017 lúc 10:02

Ta có: \(\left(7n-2\right)^2-\left(2n-7\right)^2\)

\(=\left(49n^2-14n+4\right)-\left(4n^2-14n+49\right)\)

\(=49n^2-14n+4-4n^2+14n-49\)

\(=45n^2-45\)

\(=9\left(5n^2-5\right)⋮9\) với \(n\in Z\rightarrowĐPCM.\)

Nguyễn Tử Đằng
9 tháng 7 2017 lúc 10:01

Ta có : (7n-2)2-(2n-7)2

= 7n2-22-2n2+72

=7n2-2n2+[ -22+72]

=n2.(7-2) +45

=n2.5 +45

Mà 45 \(⋮\) 9

=> n2.5 + 45 \(⋮\) 9

Vậy (7n-2)2-(2n-7)2 \(⋮\) 9

Son Nguyen
9 tháng 7 2017 lúc 9:51

cần gắp

Hoàng Ngọc Anh
Xem chi tiết
Thái Thùy Linh
Xem chi tiết
Nguyễn Lê Phước Thịnh
5 tháng 2 2022 lúc 23:26

a: \(\Leftrightarrow2n^2+n-2n-1+3⋮2n+1\)

\(\Leftrightarrow2n+1\in\left\{1;-1;3;-3\right\}\)

hay \(n\in\left\{0;-1;1;-2\right\}\)

b: \(\Leftrightarrow2n^2-4n+5n-10+3⋮n-2\)

\(\Leftrightarrow n-2\in\left\{1;-1;3;-3\right\}\)

hay \(n\in\left\{3;1;5;-1\right\}\)

c: \(\Leftrightarrow10n^2-15n+8n-12+7⋮2n-3\)

\(\Leftrightarrow2n-3\in\left\{1;-1;7;-7\right\}\)

hay \(n\in\left\{2;1;5;-2\right\}\)

d: \(\Leftrightarrow2n^2-n+4n-2+5⋮2n-1\)

\(\Leftrightarrow2n-1\in\left\{1;-1;5;-5\right\}\)

hay \(n\in\left\{1;0;3;-2\right\}\)