đa thức f(x)=2 phần 3x+1 có bao nhiêu nghiệm
Cho đa thức :f(x)=x^4-2x^2+4x+8x^3 và G(x) =6+8x^3-3x^2+4x
a, Tính F(-1)
b,Tính H(x) = F(x) - G(x)
c, Đa thức H(x) có nhiều nhất bao nhiêu nghiệm . Tìm nghiệm của đa thức H(x)
a) f(-1)=(-1)4-2(-1)2+4(-1)+8(-1)3
=1-2+(-4)+(-8)
=-9
b)H(x)=(x4-2x2+4x+8x3)-(6+8x3-3x2+4x)
=x4-2x2+4x+8x3-6-8x3+3x2+4x
=x4+x2+8x-6
t là nốt câu c):
Đa thức H(x) có bậc là 4 nên có nhiều nhất 4 nghiệm.
Làm lại câu b) của bạn kia tí nhé:
b)\(H\left(x\right)=f\left(x\right)-g\left(x\right)=x^4+x^2-6\)
c) Đa thức trên có bậc 4 nên có nhiều nhất 4 nghiệm.
\(H\left(x\right)=x^4+3x^2-2x^2-6\)
\(=\left(x^2-2\right)\left(x^2+3\right)=0\)
Suy ra \(\orbr{\begin{cases}x^2-2=0\\x^2+3=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x^2=2\\x^2=-3\left(L\right)\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\sqrt{2}\\x=-\sqrt{2}\end{cases}}\)
Cho đa thức f(x)= 2x3-8x2+9x. Đa thức f(x) có nhiều nhất bao nhiêu nghiệm? Tìm tất cả các nghiệm của đa thức f(x)
2\(x^3\) - 8\(x^2\) + 9\(x\) = 0
\(x\)(2\(x^2\) - 8\(x\) + 9) = 0
\(\left[{}\begin{matrix}x=0\\2x^2-8x+9=0\end{matrix}\right.\)
2\(x^2\) - 8\(x\) + 9 = 0
2\(x^2\) - 4\(x\) - 4\(x\) + 8 + 1 = 0
(2\(x^2\) - 4\(x\)) - (4\(x\) - 8) + 1 = 0
2\(x\)(\(x-2\)) - 4(\(x-2\)) + 1 = 0
2(\(x-2\))(\(x\) - 2) + 1 = 0
2(\(x-2\))2 + 1 = 0 (vô lí) vì (\(x\) - 2)2 ≥ 0 \(\forall\)\(x\) ⇒ 2.(\(x-2\))2 +1 ≥ 1 > 0
Vậy 2\(x^3\) - 8\(x^2\) + 9\(x\) = 0 có nhiều nhất 1 nghiệm và đó là \(x\) = 0
Cho đa thức f(x)= 2x3-8x2+9x. Đa thức f(x) có nhiều nhất bao nhiêu nghiệm? Tìm tất cả các nghiệm của đa thức f(x)
mk bít có bn nghiệm rồi mk muốn pít cách giải để tìm ra các nghiệm
Cho đa thức f(x)= 2x3-8x2+9x. Đa thức f(x) có nhiều nhất bao nhiêu nghiệm? Tìm tất cả các nghiệm của đa thức f(x)
Đa thức F(x) có nhiều nhất 3 nghiệm
f(x) = \(x\left(2x^2-8x+9\right)=0\)
TH1: x= 0
TH2: \(2x^2-8x+9=0\)
\(\Delta=\left(-8\right)^2-4.1.9=28>0\)
Vậy PT có 2 nghiệm x1 = \(\frac{8+\sqrt{28}}{2}\) ; x2 = \(\frac{8-\sqrt{28}}{2}\)
Vậy F(x) có 3 nghiệm lần lượt là
x1 = 0 ; x2 = \(\frac{8+\sqrt{28}}{2}\) ; x3 = \(\frac{8-\sqrt{28}}{2}\)
Cho đa thức f(x) thỏa mãn:
(x-2).f(x)=(15-x)(16+x).f(x-10)
Hỏi đa thức f(x) có ít nhất bao nhiêu nghiệm? Tìm các nghiệm đó.
Thay x = 2, ta có:
\(\left(2-2\right).f\left(2\right)=0.f\left(2\right)=0=\left(15-2\right)\left(16+2\right).f\left(2-10\right)\)
\(\Rightarrow13.18.f\left(-8\right)=0\)
Mà \(13,18\ne0\)
\(\Rightarrow f\left(-8\right)=0\)
Do đó -8 là một nghiệm của f(x)
Thay x = 15, ta có:
\(\left(15-2\right).f\left(15\right)=\left(15-15\right)\left(16+15\right).f\left(15-10\right)=0.31.f\left(5\right)=0\)
\(\Rightarrow13.f\left(15\right)=0\)
Mà \(13\ne0\)
\(\Rightarrow f\left(15\right)=0\)
Do đó 15 là một nghiệm của f(x)
Thay x = -16, ta có:
\(\left(-16-2\right).f\left(-16\right)=\left(15-16\right)\left[16+\left(-16\right)\right].f\left(-16-10\right)\)
\(\left(-16-2\right).f\left(-16\right)=\left(15-16\right).0.f\left(-16-10\right)\)
\(\Rightarrow\left(-18\right).f\left(-16\right)=0\)
Mà \(-18\ne0\)
\(\Rightarrow f\left(-16\right)=0\)
Do đó -16 là một nghiệm của f(x)
Như vậy đa thức f(x) có ít nhất 3 nghiệm đó là: 2;15;-16
Bài 3 :
Cho đa thức :
f(x) = 9x^3 - 1/3x + 3x^2 - 3x + 1/3x^2 - 1/9x^3 - 3x^2 - 9x + 27 + 3x
a, Thu gọn đa thức f(x)
b, Tính f(3) , f(-3)
Bài 4
Cho đa thức :
F(x) = 2x^6 + 3x^2 + 5x^3 - 2x^2 + 4x^4 - x^3 + 1 - 4x^3 - x^4
a, Thu gọn đa thức f(x)
b, Tính f(1) , f(-1)
c, Chứng minh đa thức f(x) không có nghiệm
- Giúp mình với
Bài 3:
\(f\left(x\right)=9x^3-\frac{1}{3}x+3x^2-3x+\frac{1}{3}x^2-\frac{1}{9}x^3-3x^2-9x+27+3x\)
\(f\left(x\right)=\left(9x^3-\frac{1}{9}x^3\right)-\left(\frac{1}{3}x+3x+9x-3x\right)+\left(3x^2-3x^2\right)+27\)
\(f\left(x\right)=\frac{80}{9}x^3-\frac{28}{3}x+27\)
Thay x = 3 vào đa thức, ta có:
\(f\left(3\right)=\frac{80}{9}.3^3-\frac{28}{3}.3+27\)
\(f\left(3\right)=240-28+27=239\)
Vậy đa thức trên bằng 239 tại x = 3
Thay x = -3 vào đa thức. ta có:
\(f\left(-3\right)=\frac{80}{9}.\left(-3\right)^3-\frac{28}{3}.\left(-3\right)+27\)
\(f\left(-3\right)=-240+28+27=-185\)
Bài 4: \(f\left(x\right)=2x^6+3x^2+5x^3-2x^2+4x^4-x^3+1-4x^3-x^4\)
\(f\left(x\right)=2x^6+\left(3x^2-2x^2\right)+\left(5x^3-x^3-4x^3\right)+\left(4x^4-x^4\right)\)
\(f\left(x\right)=2x^6+x^2+3x^4\)
Thay x=1 vào đa thức, ta có:
\(f\left(1\right)=2.1^6+1^2+3.1^4=2+1+3=6\)
Đa thức trên bằng 6 tại x =1
Thay x = - 1 vào đa thức, ta có:
\(f\left(-1\right)=2.\left(-1\right)^6+\left(-1\right)^2+3.\left(-1\right)^4=2+1+3=6\)
Đa thức trên có nghiệm = 0
Bài 1. Cho hai đa thức f(x)= 4x4-5x3+3x+2 và g(x)= -4x4+5x3+7. Trong các số -4; -3; 0 và 1, số nào là nghiệm của đa thức f(x) và g(x).
Bài 2. Cho hai đa thức f(x)=-x5+3x2+4x+8 và g(x)= -x5-3x2+4x+2. CMR đa thức f(x)-g(x) không có nghiệm
Bài 1
Gợi ý bạn làm : Bạn thay \(x=-4;x=-3;x=0;x=1\) vào \(f\left(x\right);g\left(x\right)\)
\(\Rightarrow\) Nếu kết quả ra giống nhau thì là nghiệm , ra khác nhau thì không là nghiệm
VD : Thay \(x=-4\) vào \(f\left(x\right)\) và \(g\left(x\right)\)
\(f\left(-4\right)=4.\left(-4\right)^4-5\left(-4\right)^3+3.\left(-4\right)+2=1334\)
\(g\left(x\right)=-4.\left(-4\right)^4+5\left(-4\right)^3+7=-1337\)
Ra hai kết quả khác nhau
\(\Rightarrow x=-4\) không là nghiệm
Bài 2
\(f\left(x\right)-g\left(x\right)=\left(-x^5+3x^2+4x+8\right)-\left(-x^5-3x^2+4x+2\right)\\ =-x^5+3x^2+4x+8+x^5+3x^2-4x-2\\ =\left(-x^5+x^5\right)+\left(3x^2+3x^2\right)+\left(4x-4x\right)+\left(8-2\right)\\ =6x^2+6\\ =x^2+1\\ =x^2+2.\dfrac{1}{2}x+\dfrac{1}{4}+\dfrac{3}{4}\\ =\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}>0\forall x\)
\(\Rightarrow\) phương trình vô nghiệm
Câu 1 :Cho hai đa thức: f(x)=2x mũ 2 -3x g(x)=4x mũ 3 -7x +6 a)Tính giá trị của đa thức f(x) tại x=3 b)Tìm nghiệm của đa thức f(x) c) Tính f(x) + g(x) Câu 2 a)Cho biết phần hệ số, phần biến và tìm bậc của đơn thức sau : -2/3 x mũ 2 và y mũ 7 b)Thu gọn đơn thức sau:(3x mù 2 y mũ 2)(-2xy mũ 5) Giúp với ạ
1:
a: f(3)=2*3^2-3*3=18-9=9
b: f(x)=0
=>2x^2-3x=0
=>x=0 hoặc x=3/2
c: f(x)+g(x)
=2x^2-3x+4x^3-7x+6
=6x^3-10x+6
Đa thức f(x) = 2x^3 - 8x^2 + 9x có nhiều nhất bao nhiêu nghiệm ? Tìm tất cả các nghiệm của đa thức f(x)
Help me !!!
\(2x^3-8x^2+9x=2x\left(x^2-4x+4,5\right)=2x\left[\left(x-2\right)^2+0,5\right]\)
\(\Rightarrow F\left(x\right)\)có nghiệm duy nhất là 0
Đa thức f(x) có 3 nghiệm
+) f(0) = 2 x 0^3 - 8 x 0^ 2 + 9 x 0
= 0 - 0 + 0
= 0
+)
Ta có no của đa thức f(x) =0
\(\Leftrightarrow2x^3-8x^2+9x=0\)
\(\Leftrightarrow2x.\left(x^2-4x+4,5\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}2x=0\\x^2-4x+4,5=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=0\\\left(x-2\right)^2+x.5=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=0\\loai\end{cases}}}}\)
Vậy đa thức f(x) chỉ có 1 nghiệm khi và chỉ khi x= 0