Chung minh vơi mọi m,n thuộc Z (n+1).(2n+1) chia hết cho 6
a, Chứng minh rằng với mọi m thuộc Z ta luôn có m3 - m chia hết cho 6 .
b, Chứng minh rằng với mọi n thuộc Z ta luôn có ( 2n - 1 ) - 2n + 1 chia hết cho 8
a) Ta có: m^3-m = m(m^2-1^2) = m.(m+1)(m-1) là tích của 3 số nguyên liên tiếp
=> m(m+1)(m-1) chia hết cho 3 và 2
Mà (3,2) = 1
=> m(m+1)(m-1) chia hết cho 6
=> m^3 - m chia hết cho 6 V m thuộc Z
b) Ta có: (2n-1)-2n+1 = 2n-1-2n+1 = 0-1+1 = 0 luôn chia hết cho 8
=> (2n-1)-2n+1 luôn chia hết cho 8 V n thuộc Z
Tick nha pham thuy trang
a, m3 - m = m( m2 - 12) = m(m - 1 ) ( m + 1) => 3 số nguyên liên tiếp : hết cho 6
mk chỉ biết có thế thôi
công thanh sai rồi số nguyên chứ đâu phải số tự nhiên
Chứng minh
a/ ƯCLN (2n+3,4n+1)=1
b/ n(n+5) chia hết cho 2 với mọi n thuộc N
c/ (n+3).(n+7).(n+8) chia hêt cho 6 vơi mọi điều kiện n thuộc N
1. Đề sai với $n=1$.
2.
Nếu $n$ chẵn thì hiển nhiên $n(n+5)\vdots 2$
Nếu $n$ lẻ thì $n+5$ chẵn $\Rightarrow n(n+5)\vdots 2$
Vậy $n(n+5)\vdots 2$ với mọi $n\in\mathbb{N}$
3.
Vì $n+7, n+8$ là 2 số tự nhiên liên tiếp nên trong 2 số này sẽ có 1 số chẵn và 1 số lẻ.
$\Rightarrow (n+7)(n+8)\vdots 2$
$\Rightarrow (n+3)(n+7)(n+8)\vdots 2(1)$
Lại có:
Nếu $n\vdots 3\Rightarrow n+3\vdots 3\Rightarrow (n+3)(n+7)(n+8)\vdots 3$
Nếu $n$ chia 3 dư 1 thì $n+8\vdots 3\Rightarrow (n+3)(n+7)(n+8)\vdots 3$
Nếu $n$ chia 3 dư 2 thì $n+7\vdots 3\Rightarrow (n+3)(n+7)(n+8)\vdots 3$
Vậy $(n+3)(n+7)(n+8)\vdots 3(2)$
Từ $(1); (2)$ mà $(2,3)=1$ nên $(n+3)(n+7)(n+8)\vdots 6$
+) Giả sử n là số chẵn
Nếu n là số chẵn thì n chia hết cho 2
=> n(n+)(2n+1) chia hết cho 2
+) Giả sử n là số lẻ
Nếu n là số lẻ thì n+1 là số chẵn và chia hết cho 2
=> n(n+1)(2n+1) chia hết cho 2
<=> n(n+1)(2n+1) chia hết cho 2 với mọi n thuộc Z (1)
Vì n thuộc Z nên n có dạng 3k;3k+1 và 3k+2
(+) Với n=3k
=> n chia hết cho 3 => n(n+1)(2n+1) chia hết cho 3
(+) Với n=3k+1
=> 2n+1 = 2.(3k+1)+1 = 6k+2+1 = 6k+3 chia hết cho 3
=> n(n+1)(2n+1) chia hết cho 3
(+) Với n=3k+2
=> n+1 = 3k+2+1 = 3k+3 chia hết cho 3
=> n(n+1)(2n+1) chia hết cho 3
<=> n(n+1)(2n+1) chia hết cho 3 với mọi n thuộc Z (2)
Từ (1) và (2) => n(n+1)(2n+1) chia hết cho 2.3 ( vì 2 và 3 là hai số nguyên tố cùng nhau )
=> n(n+1)(2n+1) chia hết cho 6
=> ĐPCM
__HT__ Merry Christmas__
Chứng minh rằng với mọi n thuộc Z thì:
a) n (2n - 3) - 2n (n + 1) chia hết cho 5
b) (n-1) (n+4) - (n-4) (n+1) chia hết cho 6
Chứng Minh rắng n3-13n chia hết cho 6 vơi mọi n thuộc Z
Đặt B = n3 - 13n = n3 - n -12n = n(n - 1)(n + 1) - 12n
Ta có : Trong 3 số nguyên liên tiếp tồn tại ít nhất 1 số chẵn và tồn tại ít nhất một số chia hết cho 3 nên tích của 3 số đó chia hết cho 2 và
chia hết cho 3 mà (2;3) = 1 nên tích 3 số nguyên liên tiếp chia hết cho 6
=> n(n - 1)(n + 1) chia hết cho 6 mà 12n chia hết cho 6
=> n3 - n chia hết cho 6
tìm n thuộc N,chứng minh rằng:
a,(n+10)(n+15)chia hết cho 2
b,n(n+1)(2n+1)chia hết cho 6
c,n(2n+1)(7n+1)chia hết cho 6 (với mọi n thuộc N)
a; (n + 10)(n + 15)
+ Nếu n là số chẵn ta có: n + 10 ⋮ 2 ⇒ (n + 10)(n + 15) ⋮ 2
+ Nếu n là số lẻ ta có: n + 15 là số chẵn
⇒ (n + 15) ⋮ 2 ⇒ (n + 10)(n + 15) ⋮ 2
Từ những lập luận trên ta có:
A = (n + 10)(n + 15) ⋮ 2 ∀ n \(\in\) N
Chứng minh rằng: n2.(n+1)+2n.(n+1) luôn chia hết cho 6 với mọi n thuộc Z
n^2.(n+1) + 2n.(n+1)
=(n+1). (n^2 + 2n)
= (n+1).n.(n+2) chia hết cho 6 (tích 3 số tự nhiên liên tiếp chia hết cho 6)
n2.(n + 1) + 2n.(n + 1) = (n2 + 2n)(n + 1) = n(n + 1)(n + 2)
Vì n(n + )(n + 2) là tích của 3 số nguyên liên tiếp nên có 1 số chia hết cho 2, 1 số chia hết cho 3.
=> Tích n(n + 1)(n + 2) chia hết cho 2 và 3.
Mà (2,3) = 1
=> n(n + 1)(n + 2) chia hết cho 6
=> n2.(n+1)+2n.(n+1) chia hết cho 6
Chứng minh rằng:
n2.(n+1)+2n.(n+1) luôn chia hết cho 6 với mọi n thuộc Z
Chung minh rằng
(5n+7).(4n+6) chia hết cho 2 vơi mọi số tựn nhiên n
(8N+1).(6N+5) không chia hết cho 2 vơi moi số tự nhiên n