giải hệ phương trình:
x+z=-2 và (x+1)(z+2)^2+x(z+2)=30z+3
giải hệ pt: \(\left\{{}\begin{matrix}x+z=3\\\left(x+1\right)\left(z+2\right)^2+x\left(x+2\right)=30z+3\end{matrix}\right.\)
Giải hệ phương trình:x+y+z=1 và x^4+y^4+z^4=xyz?
Tìm x và z\(\hept{\begin{cases}x+z=3\\\left(x+1\right)\left(z+2\right)^{2\:\:\:}\:x\left(z+2\right)=30z+3\end{cases}}\)
giải hệ phương trình sau
x+y+z=0
x^2+y^2+z^2=6
x^3+y^3+z^3=6
Ta có x + y + z = 0
<=> (x + y + z)2 = 0
<=> \(x^2+y^2+z^2+2xy+2yz+2zx=0\)
\(\Leftrightarrow xy+yz+zx=-3\) (vì x2 + y2 + z2 = 6)
\(\Leftrightarrow x\left(y+z\right)+yz=-3\)
\(\Leftrightarrow-x^2+yz=-3\Leftrightarrow yz=x^2-3\) (vì x + y + z = 0)
Khi đó \(x^3+y^3+z^3=x^3+(y+z).(y^2+z^2-yz)\)
\(=x^3-x.[6-x^2-(x^2-3)]\)
\(=x^3-x.(9-2x^2)=3x^3-9x=6\)
Ta được \(\Leftrightarrow x^3-3x-2=0\Leftrightarrow(x^3+1)-3(x+1)=0\)
\(\Leftrightarrow(x+1)(x^2-x-2)=0\)
\(\Leftrightarrow\left(x+1\right)^2\left(x-2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=2\end{matrix}\right.\)
Với x = -1 ta có hệ \(\left\{{}\begin{matrix}y+z=1\\y^2+z^2=5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=1-z\\(1-z)^2+z^2=5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=1-z\\z^2-z-2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=1-z\\\left[{}\begin{matrix}z=-1\\z=2\end{matrix}\right.\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}y=2\\z=-1\end{matrix}\right.\\\left\{{}\begin{matrix}y=-1\\z=2\end{matrix}\right.\end{matrix}\right.\)
Với x = 2 ta có hệ : \(\left\{{}\begin{matrix}y+z=-2\\y^2+z^2=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=-2-z\\(-2-z)^2+z^2=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=-2-z\\z^2+2z+1=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}y=-2-z\\z=-1\end{matrix}\right.\Leftrightarrow y=z=-1\)
Vậy (x;y;z) = (2;-1;-1) ; (-1 ; 2 ; -1) ; (-1 ; -1 ; 2)
Giải hệ phương trình :
\(\begin{cases}x+y+z=1\\x^2+y^2+z^2=1\\x^3+y^3+z^3=1\end{cases}\)
x+y+z=1;x^2+y^2+z^2=1;x^3+y^3+z^3=1
=>x+y+z=x^2+y^2+z^2=x^3+y^3+z^3=1
=>x=y=z=1
Hệ phương trình
2x 2z 3 0
3 8 0
3x 2 1 0
y
x y z
y z
có nghiệm là:
A. (x;y;z)=(-1;3;2) B. (x;y;z)=(1;-3;2) C. (x;y;z)=(1;-3;-2) D. (x;y;z)=(-1;3;-2)
GIẢI HỘ MÌNH VỚI, CẦN GẤP Ạ
Bạn viết dưới dạng trực quan để mn hiểu câu hỏi nhé!
Giải hệ phương trình \(\left\{{}\begin{matrix}x+y+z=1\\x^2+y^2+z^2=1\\x^3+y^3+z^3=1\end{matrix}\right.\)
Đây nek Câu hỏi của nguyen don - Toán lớp 9 - Học toán với OnlineMath
+> Lấy (x + y + z)^2 = x^2+y^2+z^2+2xy+2yz+2xz = 1+2xy+2yz+2xz Mà (x + y + z)^2 = 1 => 2xy+2yz+2xz = 0 => xy+yz+xz = 0 => (xy+yz+xz)(x + y + z) = 0 +> Lấy (x + y + z)^3 = x^3 + y^3 + z^3 + 6xyz + 3xy^2 + 3x^2y + 3x^2z + 3xz^2 + 3yz^2 + 3y^2z = 1 + 6xyz + 3xy^2 + 3x^2y + 3x^2z + 3xz^2 + 3yz^2 + 3y^2z Mà (x + y + z)^3 = 1 => 6xyz + 3xy^2 + 3x^2y + 3x^2z + 3xz^2 + 3yz^2 + 3y^2z = 0 => 6xyz + 3(xy^2 + x^2y + x^2z + xz^2 + yz^2 + y^2z) = 0 => 6xyz + 3[xy(x+y) + xz(x+z) + yz(y+z)] = 0 => 6xyz + 3[xy(1-z) + xz(1-y) + yz(1-x)] = 0 => 6xyz + 3(xy - xyz + xz - xyz + yz - xyz) = 0 Mà xy+yz+xz = 0 => 6xyz - 9xyz = 0 => xyz = 0 Mà (xy+yz+xz)(x + y + z) = 0 => (xy+yz+xz)(x + y + z) = xyz => (xy+yz+xz)(x+y+z) - xyz = 0
Phân tích đa thức trên thành nhân tử, ta có (x+y)(y+z)(x+z) = 0 => x+y = 0 ; y+z = 0 ; x+z = 0 Có x^2017 + y^2017 + z^2017 = (x+y)(x^2017 -x^2016y+...+y^2017) + z^2017 (1)
= z^ 2017 Có x+y = 0 => x = -y => (x + y + z )^2017 = z^2017 (2)
Từ (1) và (2) = > x^2017 + y^2017 + z^2017 = (x + y + z )^2017 = 1
Giải hệ phương trình: \(\hept{\begin{cases}x=y^3+y^2+y-2\\y=z^3+z^2+z-2\\z=x^3+x^2+x-2\end{cases}}\)
Giải hệ phương trình
\(\hept{\begin{cases}x+y-z=7\\x^2+y^2-z^2=37\\x^3+y^3-z^3=1\end{cases}}\)
I don't know how to do exercise
\(\hept{\begin{cases}x+y-z=7\\x^2+y^2-z^2=37\\x^3+y^3-z^3=1\end{cases}}\)<=> \(\hept{\begin{cases}x+y=7+z\\x^2+y^2=37+z^2\\x^3+y^3=1+z^3\end{cases}}\)
Ta có: \(x^2+y^2=37+z^2\)
<=> \(\left(x+y\right)^2-2xy=37+z^2\)
<=> \(2xy=\left(7+z\right)^2-37-z^2\)
<=> \(xy=6+7z\)
Ta có: \(x^3+y^3=1+z^3\)
<=> \(\left(x+y\right)\left(x^2+y^2-xy\right)=1+z^3\)
<=> \(\left(7+z\right)\left(37+z^2-6-7z\right)=1+z^3\)đây là phương trình bậc 2. Em giải ra tìm z => x; y