Rút gọn A= 1^2016+2^2016+3^2016+....+10^2016/ 2^2016+3^2016+....+20^2016
Rút gọn :
A = \(\frac{1^{2016}+2^{2016}+3^{2016}+...+10^{2016}}{2^{2016}+4^{2016}+6^{2016}+...+20^{2016}}\)
tinh nhanh: 1^2016+2^2016+3^2016+.......+10^2016/2^2016+4^2016+6^2016+.....+20^2016
\(2^{2016}+4^{2016}+6^{2016}+...+20^{2016}=2^{2016}\left(1+2^{2016}+3^{2016}+...+10^{2016}\right)\)
Do đó:
\(A=\frac{1^{2016}+2^{2016}+3^{2016}+...+10^{2016}}{2^{2016}+4^{2016}+6^{2016}+...+20^{2016}}=\frac{1}{2^{2016}}\)
So sánh:
a) A = 102016 - 2 / 102017 - 2 và B = 202015 + 1 / 102016 + 1
b) A = 20162017 - 3 / 20162018 - 3 và B = 20162016 + 3 / 20162017 + 3
c) A = 20172016 - 2015 / 20172017 - 2015 và B = 20172015 + 1 / 20172016 + 1
Bài 1 :
a, - { -(2016 +2015) - [ - (2016 - 2015) - (2016+2015) ] }
b, 2016 - { ( 2016 + 3) - [ (2016 + 3) - (- 2016 - 2) ] }
c, [ 2016 + (2016 + 3) ] - [ (2016 + 2) - (2016 - 2) ]
a, - { -(2016 +2015) - [ - (2016 - 2015) - (2016+2015) ] }
= -{-(2016+2015)-[-0-0]}
= -{-4031-0-0}
=-4031
A=10^2016+2/10^2016-1 và B =10^2016/10^ 2016-3
\(A=\dfrac{10^{2016}-1+3}{10^{2016}-1}=1+\dfrac{3}{10^{2016}-1}\)
\(B=\dfrac{10^{2016}-3+3}{10^{2016}-3}=1+\dfrac{3}{10^{2016}-3}\)
mà \(10^{2016}-1>10^{2016}-3\)
nên A<B
Tính A= 1/20+1/30+1/42+1/56+...+1/990
Tính S= 1/6+1/66+1/176+1/336+...+1/496*501
So sánh A và B :
A=2016^2016+2/2016^2016-1 và B=2016^2016/2016^2016-3
Cho A=2016^2016+2/2016^2016-1 và B=2016^2016/2016^2016-3
Ta có:A=\(\frac{2016^{2016}+2}{2016^{2016}-1}\)>1
=>A<\(\frac{2016^{2016}+2-2}{2016^{2016}-1-2}\)=\(\frac{2016^{2016}}{2016^{2016}-3}\)=B
=>A<B(công thức nếu \(\frac{a}{b}\)>1 thì \(\frac{a}{b}\)<\(\frac{a-n}{b-n}\)(nEN)
CM công thức:
Ta có \(\frac{a}{b}\)>1=>a>b=>a=b+n(nEN)
Ta so sánh \(\frac{a}{b}\) và \(\frac{a-n}{b-n}\)(nEN)
Mà a*(b-n)=ab-an=ab-(b+n)*n=ab-(bn+n2)=ab-bn-n2
b*(a-n)=ba-bn
Vì ab-bn-n2<ba-bn
=>\(\frac{a}{b}\)<\(\frac{a-n}{b-n}\)
Cho B=(2016+10.(2016+2).(2016+3). ... .(2016+2016+2016). Chứng minh B chia hết cho 3^2016
Rút gọn: A=\(\sqrt{1+2015^{2^{ }}+\dfrac{2015^2}{2016^2}}+\dfrac{2015}{2016}\)
\(A=\sqrt[]{1+2015^2+\dfrac{2015^2}{2016^2}}+\dfrac{2015}{2016}\)
\(\Leftrightarrow A=\sqrt[]{\left(1+2015\right)^2-2.2015+\dfrac{2015^2}{\left(2015+1\right)^2}}+\dfrac{2015}{2016}\)
\(\Leftrightarrow A=\sqrt[]{\left(1+2015-\dfrac{2015}{2015+1}\right)^2}+\dfrac{2015}{2016}\)
\(\Leftrightarrow A=\left|1+2015-\dfrac{2015}{2016}\right|+\dfrac{2015}{2016}\)
\(\Leftrightarrow A=1+2015-\dfrac{2015}{2016}+\dfrac{2015}{2016}\)
\(\Leftrightarrow A=1+2015=2016\)