cho tam giác abc có b mũ ô > 90 độ , điểm D nằm giũa b và c .Chứng minh bằng ab<ad<ac
Cho tam giác ABC có góc B > 90 độ, điểm D nằm giữa B và C. Chứng minh rằng AB < AD < AC.
góc B > 90 độ
\(\Rightarrow\)cạnh huyền AD lớn nhất => AB < AD (1)
góc ADC > góc B = 90 độ (góc ngoài tại D của tam giác ABD)
=> góc ADC > 90 độ => cạnh huyền AC lớn nhất => AD < AC (2)
Từ (1) và (2), => AB < AD <AC (đpcm)
Cho tam giác ABC có góc B lớn hơn 90 độ. Điểm D nằm giữa B và C. Chứng minh AB<AD<AC
trong tam giác ABD có góc B > 90 độ => góc B là góc lớn nhất và góc ADB <90 độ
=> AD> AB ( quan hệ góc cạnh trong tam giác) hay AB<AD (1)
có góc ADB + góc ADC = 180 độ mà góc ADB < 90 độ
=> góc ADC > 90 độ
trong tam giác ADC có góc ADC > góc ACD => AC> AD hay AD<AC (2)
từ (1) và (2) => AB< AD< AC
Cho tam giác ABC có góc B lớn hơn 90 độ. Điểm D nằm giữa B và C. Chứng minh AB<AD<AC
Tam giác ABC có góc BAC bằng 120 độ, trên tia phân giác góc BAC lấy D và E( D nằm giũa A và E) sao cho AD = AB, DE= AC. chứng minh tam giác BEC là tam giác đều
1.Cho tam giác ABC,có Góc B >90 độ, điểm D nằm A và C. Chứng minh rằng AB<AD<AC , ( Cần vẽ hình và giải đáp ah)!
2.Cho tam giác ABC,có góc  là góc tù, góc B >góc C. So sánh các cạnh trong tam giác ABC
(cần vẽ hình và giải đáp ah )
Bài 2:
Xét ΔABC có \(\widehat{A}>\widehat{B}>\widehat{C}\)
nên BC>AC>AB
cho tam giác ABC có góc A = 90 độ , AB=AC qua A kẻ đường thẳng d sao cho điểm B và điểm C nằm cùng phía với điểm d. kẻ BD và CE vuông góc với đường thẳng d. chứng minh rằng BD=AE , AD=CF
1) Cho góc xAy = 90 độ. Trên cạnh Ax lấy hai điểm B và D ( D nằm giữa A và B ) , trên cạnh Ay lấy hai điểm C và E ( C nằm giữa A và E ) sao cho AD = AC ; AB = AE
a) Chứng minh : tam giác ABC = tam giác AED ; tam giác BCE = tam giác EDB
b) Đường thẳng qua A vuông góc với BC tại H và cắt DE tại M. Chứng minh M là trung điểm của DE
Cho ( O, R ) đường kính AB . Lấy điểm C nằm trên đường tròn , tiếp tuyến tại C cắt tiếp tuyến tại B ở D và E . Chứng minh
a) OE vuông góc với BC và tam giác ABC
b) DE = AD + BE
c) DÔE = 90 độ
d) BE.AD=R mũ 2
\(a,\) Theo tc 2 tt cắt nhau: \(BE=CE\Rightarrow E\in\text{trung trực }BC\)
Mà \(OB=OC=R\Rightarrow O\in\text{trung trực }BC\)
Do đó OE là trung trực BC
Vậy \(OE\perp BC\)
\(b,\) Theo tc 2 tt cắt nhau \(AD=CD;BE=CE\)
\(\Rightarrow AD+BE=CE+CD=DE\)
\(c,\) Ta có \(OB=OC=R\Rightarrow\Delta OBC\text{ cân tại }O\)
Mà OE là trung trực nên cũng là phân giác
\(\Rightarrow\widehat{COE}=\widehat{BOE}=\dfrac{1}{2}\widehat{BOC}\)
Tương tự \(a,\) ta được OD là trung trực AC
Mà \(OA=OC=R\Rightarrow\Delta OAC\text{ cân tại }O\)
Mà OD là trung trực nên cũng là phân giác
\(\Rightarrow\widehat{AOD}=\widehat{COD}=\dfrac{1}{2}\widehat{AOC}\)
Ta có \(\widehat{DOE}=\widehat{COE}+\widehat{DOC}=\dfrac{1}{2}\left(\widehat{AOC}+\widehat{BOC}\right)=\dfrac{1}{2}\cdot180^0=90^0\)
\(d,\) Áp dụng HTL vào tam giác DOE vuông tại O có OC là đg cao:
\(BE\cdot AD=DC\cdot CE=OC^2=R^2\)
Cho hình tam giác ABC sao cho AB=AC. Lấy điểm M nằm giũa A và C, N nằm giữa A và B sao cho CM=CB. Chứng minh rằng đoạn thẳng BM cắt đoạn thẳng CM