Tìm x c Z:
K=\(\frac{4x+6}{2x+2}\)
thực hiện các phép tính sau
a) \(\frac{x+1}{2x+6}+\frac{2x+3}{x^2+3x}\)
b) \(\frac{3}{2x+6}-\frac{x-6}{2x^2+6x}\)
c) \(\frac{5x+10}{4x-8}.\frac{4-2x}{x+2}\)
d) \(\frac{1-4x^2}{x^2+4x}:\frac{2-4x}{3x}\)
a) Ta có: \(\frac{x+1}{2x+6}+\frac{2x+3}{x^2+3x}\)
\(=\frac{x+1}{2\left(x+3\right)}+\frac{2x+3}{x\left(x+3\right)}\)
\(=\frac{x\left(x+1\right)}{2x\left(x+3\right)}+\frac{2\cdot\left(2x+3\right)}{2x\left(x+3\right)}\)
\(=\frac{x^2+x+4x+6}{2x\left(x+3\right)}\)
\(=\frac{x^2+5x+6}{2x\left(x+3\right)}\)
\(=\frac{x^2+2x+3x+6}{2x\left(x+3\right)}\)
\(=\frac{x\left(x+2\right)+3\left(x+2\right)}{2x\left(x+3\right)}\)
\(=\frac{\left(x+2\right)\left(x+3\right)}{2x\left(x+3\right)}=\frac{x+2}{2x}\)
b) Ta có: \(\frac{3}{2x+6}-\frac{x-6}{2x^2+6x}\)
\(=\frac{3}{2x+6}-\frac{x-6}{x\left(2x+6\right)}\)
\(=\frac{3x}{x\left(2x+6\right)}-\frac{x-6}{x\left(2x+6\right)}\)
\(=\frac{3x-x+6}{x\left(2x+6\right)}=\frac{2x+6}{x\left(2x+6\right)}=\frac{1}{x}\)
c) Ta có: \(\frac{5x+10}{4x-8}\cdot\frac{4-2x}{x+2}\)
\(=\frac{5\left(x+2\right)\cdot2\cdot\left(2-x\right)}{4\cdot\left(x-2\right)\cdot\left(x+2\right)}\)
\(=\frac{5\cdot2\cdot\left(2-x\right)}{-4\left(2-x\right)}=\frac{5\cdot2}{-4}=\frac{-5}{2}\)
d) Ta có: \(\frac{1-4x^2}{x^2+4x}:\frac{2-4x}{3x}\)
\(=\frac{\left(1-2x\right)\left(1+2x\right)\cdot3x}{x\left(x+4\right)\cdot2\left(2-x\right)}\)
\(=\frac{\left(1-2x\right)\left(1+2x\right)\cdot3}{2\left(x+4\right)\cdot\left(2-x\right)}=\frac{3\left(1-4x^2\right)}{2\left(-x^2-2x+8\right)}\)
\(=\frac{3-12x^2}{-2x^2-4x+16}\)
a) \(\frac{x+1}{2x+6}+\frac{2x+3}{x^2+3x}\)
\(=\frac{x+1}{2\left(x+3\right)}+\frac{2x+3}{x\left(x+3\right)}\) \(\left(ĐKXĐ:x\ne-3;x\ne0\right)\)
\(=\frac{x^2+x}{2x\left(x+3\right)}+\frac{4x+6}{2x\left(x+3\right)}\)
\(=\frac{x^2+2x+3x+6}{2x\left(x+3\right)}=\frac{\left(x+2\right)\left(x+3\right)}{2x\left(x+3\right)}=\frac{x+2}{2x}\)
b) \(\frac{3}{2x+6}-\frac{x-6}{2x^2+6x}=\frac{3}{2\left(x+3\right)}-\frac{x-6}{2x\left(x+3\right)}\) \(\left(ĐKXĐ:x\ne0;x\ne-3\right)\)
\(=\frac{3x}{2x\left(x+3\right)}-\frac{x-6}{2x\left(x+3\right)}=\frac{2\left(x+3\right)}{2x\left(x+3\right)}=\frac{1}{x}\)
c) \(\frac{5x+10}{4x-8}.\frac{4-2x}{x+2}=\frac{5\left(x+2\right)}{4\left(x-2\right)}.\frac{2\left(2-x\right)}{x+2}\) \(\left(ĐKXĐ:x\ne\pm2\right)\)
\(=\frac{-5\left(x-2\right)}{2\left(x-2\right)}=\frac{-5}{2}\)
giai phuong trinh
c) \(\frac{4x}{x^2+4x+3}-1=6\left(\frac{1}{x+3}-\frac{1}{2x+2}\right)\)
d) \(\frac{3}{2x+1}=\frac{6}{2x+3}+\frac{8}{4x^2+8x+3}\)
\(\frac{4x}{x^2+4x+3}-1=6\left(\frac{1}{x+3}-\frac{1}{2x+2}\right)\) \(ĐK:x\ne-1;x\ne-3\)
\(\Leftrightarrow\frac{4x}{x^2+4x+3}-\frac{x^2+4x+3}{x^2+4x+3}=6\left[\frac{2\left(x+1\right)}{2\left(x+3\right)\left(x+1\right)}-\frac{x+3}{2\left(x+1\right)\left(x+3\right)}\right]\)
\(\Leftrightarrow\frac{4x-x^2-4x-3}{x^2+4x+3}=6\left[\frac{2\left(x+1\right)-x-3}{2\left(x+3\right)\left(x+1\right)}\right]\)
\(\Leftrightarrow\frac{-x^2-3}{x^2+4x+3}=6\left[\frac{2x+2-x-3}{2\left(x^2+4x+3\right)}\right]\)
\(\Leftrightarrow\frac{-x^2-3}{x^2+4x+3}=\frac{6\left(x-1\right)}{2\left(x^2+4x+3\right)}\)
\(\Leftrightarrow\frac{-x^2-3}{x^2+4x+3}=\frac{3\left(x-1\right)}{x^2+4x+3}\)
\(\Leftrightarrow-x^2-3=3x-3\)
\(\Leftrightarrow-x^2-3x=0\)
\(\Leftrightarrow-x\left(x+3\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\x=-3\left(loại\right)\end{cases}}\)
Vậy x = 0
\(ĐK:x\ne\frac{-1}{2};x\ne\frac{-3}{2}\)
\(\frac{3}{2x+1}=\frac{6}{2x+3}+\frac{8}{4x^2+8x+3}\)
\(\Leftrightarrow\frac{3}{2x+1}-\frac{6}{2x+3}=\frac{8}{4x^2+8x+3}\)
\(\Leftrightarrow\frac{3\left(2x+3\right)-6\left(2x+1\right)}{\left(2x+1\right)\left(2x+3\right)}=\frac{8}{4x^2+8x+3}\)
\(\Leftrightarrow\frac{6x+9-12x-6}{4x^2+8x+3}=\frac{8}{4x^2+8x+3}\)
\(\Leftrightarrow-6x+3=8\)
\(\Leftrightarrow x=-\frac{5}{6}\)
Vậy ...
Bài 4: Giải các phương trình sau
a) 4(x+5)(x+6)(x+10)(x+12)=\(3x^2\)
b) \(\frac{1}{x^2-3x+3}+\frac{2}{x^2-3x+4}=\frac{6}{x^2-3x+5}\)
c) \(\frac{4x}{4x^2-8x+7}+\frac{3x}{4x^2-10x+7}=1\)
d) \(\dfrac{2x}{2x^2-5x+3}+\dfrac{13x}{2x^2+x+3}=6\)
a: \(\Leftrightarrow4\left(x^2+60+17x\right)\left(x^2+60+16x\right)=3x^2\)
\(\Leftrightarrow4\cdot\left[\left(x^2+60\right)^2+33x\left(x^2+60\right)+272x^2\right]=3x^2\)
=>4(x^2+60)^2+132x(x^2+60)+1085x^2=0
=>4(x^2+60)^2+62x(x^2+60)+70x(x^2+60)+1085x^2=0
=>2(x^2+60)(2x^2+120+31x)+35x(2x^2+120+31x)=0
=>(2x^2+120+35x)(2x^2+31x+120)=0
=>\(x\in\left\{\dfrac{-35\pm\sqrt{265}}{4};-\dfrac{15}{2};-8\right\}\)
b: Đặt x^2-3x=a
Phương trình sẽ là \(\dfrac{1}{a+3}+\dfrac{2}{a+4}=\dfrac{6}{a+5}\)
\(\Leftrightarrow\dfrac{a+4+2a+6}{\left(a+3\right)\left(a+4\right)}=\dfrac{6}{a+5}\)
=>(3a+10)(a+5)=6(a^2+7a+12)
=>6a^2+42a+72=3a^2+15a+10a+50
=>3a^2+17a+22=0
=>x=-2 hoặc x=-11/3
rút gọn
a, (2x-1) (3x+5)-2(-4x+1)2
b, \(\frac{x^2-16}{4x-x^2}\)
c, \(\frac{2x-9}{x^2-5x+6}+\frac{2x+1}{x-3}+\frac{x+3}{2-x}\)
d, (x-1)3-(x+1)3+6(x+1) (x-1)
e, (2x+7)2-(4x+14) (2x-8)+(8-2x)2
a) (2x - 1)(3x + 5) - 2(-4x + 1)2 = 6x2 + 10x - 3x - 5 - 2(16x2 - 8x + 1) = 6x2 - 3x - 5 - 32x2 + 16x - 2 = -26x2 + 13x - 7
b) \(\frac{x^2-16}{4x-x^2}=\frac{\left(x-4\right)\left(x+4\right)}{-x\left(x-4\right)}=-\frac{x+4}{x}\)
c) \(\frac{2x-9}{x^2-5x+6}+\frac{2x+1}{x-3}+\frac{x+3}{2-x}\)
= \(\frac{2x-9}{x^2-2x-3x+6}+\frac{\left(2x+1\right)\left(x-2\right)}{\left(x-3\right)\left(x-2\right)}-\frac{\left(x+3\right)\left(x-3\right)}{\left(x-3\right)\left(x-2\right)}\)
= \(\frac{2x-9+2x^2-3x-2-x^2+9}{\left(x-3\right)\left(x-2\right)}\)
= \(\frac{x^2-x-2}{\left(x-3\right)\left(x-2\right)}\)
= \(\frac{x^2-2x+x-2}{\left(x-3\right)\left(x-2\right)}\)
= \(\frac{\left(x+1\right)\left(x-2\right)}{\left(x-3\right)\left(x-2\right)}=\frac{x+1}{x-3}\)
d) (x - 1)3 - (x + 1)3 + 6(x + 1)(x - 1)
= (x - 1 - x - 1)[(x - 1)2 + (x - 1)(x + 1) + (x + 1)2] + 6(x2 - 1)
= -2(x2 - 2x + 1 + x2 - 1 + x2 + 2x + 1) + 6x2 - 6
= -2(3x2 + 1) + 6x2 - 6
= -6x2 - 2 + 6x2 - 6
= -8
e) (2x + 7)2 - (4x + 14)(2x - 8) + (8 - 2x)2
= (2x + 7)2 - 2(2x + 7)(2x - 8) + (2x - 8)2
= (2x + 7 - 2x + 8)2
= 152 = 225
Cho biểu thức A=\(\left(\frac{2x+1}{1-2x}-\frac{1-2x}{1+2x}-\frac{16x^2}{4x^2-1}\right):\frac{16x^3-4x}{4x^2-4x+1}\)
a) Tìm ĐKXĐ
b) Rút gọn
c) Tìm x để A có giá trị dương
tìm x là nghiệm nguyên dương của phương trình \(\frac{x^2\left(4x^6-2x^3+1\right)}{12^{x^2-4x+3}}=\frac{8x^9+1}{6^{x^2-4x+3}+8^{x^2-4x+3}+9^{x^2+4x+3}}\)
x=+-10;x=1+431/1000;x=-1893/2500;x=-7543/10000;x=1
x=0,+-10 ms biết như thế ko biết đúng ko
Tìm nguyên hàm sau:
6) \(\int \frac{x^2-4x+2}{x^2+2x-3}dx\)
\(\dfrac{x^2-4x+2}{x^2+2x-3}\)
\(=\dfrac{x^2+2x-3-6x-5}{x^2+2x-3}\)
\(=1-\dfrac{6x+5}{\left(x+3\right)\left(x-1\right)}\)
Đặt \(\dfrac{6x+5}{\left(x+3\right)\left(x-1\right)}=\dfrac{A}{x+3}+\dfrac{B}{x-1}\)
=>\(6x+5=A\left(x-1\right)+B\left(x+3\right)\)
=>\(6x+5=x\left(A+B\right)-A+3B\)
=>\(\left\{{}\begin{matrix}A+B=6\\-A+3B=5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}B=\dfrac{11}{4}\\A=6-\dfrac{11}{4}=\dfrac{13}{4}\end{matrix}\right.\)
vậy: \(\dfrac{x^2-4x+2}{x^2+2x-3}=1-\dfrac{13}{4x+12}-\dfrac{11}{4x-4}\)
\(\int\dfrac{x^2-4x+2}{x^2+2x-3}dx=\int1-\dfrac{13}{4x+12}-\dfrac{11}{4x-4}dx\)
\(=x-\dfrac{13}{4}\cdot ln\left|x+3\right|-\dfrac{11}{4}\cdot ln\left|x-1\right|\)
cho biểu thức \(A=\left(\frac{x+2}{x+1}+\frac{2x}{2-x}+\frac{x^2+4x+6}{x^2-x-2}\right)\div\frac{x^2+1}{2x^2-4x}\)
a) rút gọn a
b) tìm giá trị lớn nhất của a
A=4x^2=4xy+17y^2-8y+1
B=\(\frac{x^2-2}{x^2+2}\)
C=\(\frac{5x^2-10+3}{\left(x-1\right)^2}\)
D=\(\frac{3x^2-8x+6}{x^2-2x+1}\)
Tìm GTLN của biểu thức sau
C=\(\frac{x^2+5x+7}{x^2+4x+4}\)
D=\(\frac{x^2-2x+2020}{x^2}\)