Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
le duc minh vuong
Xem chi tiết
Nguyễn Huy Tú
5 tháng 1 2017 lúc 12:27

Giải:

Ta có: \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{a}{c}=\frac{b}{d}=\frac{2a}{2c}=\frac{5b}{5d}=\frac{2a+5b}{2c+5d}\)

\(\frac{a}{c}=\frac{b}{d}=\frac{3a}{3c}=\frac{4b}{4d}=\frac{3a-4b}{3c-4d}\)

\(\Rightarrow\frac{2a+5b}{2c+5d}=\frac{3a-4b}{3c-4d}\left(=\frac{a}{c}\right)\)

\(\Rightarrow\frac{2a+5b}{3a-4b}=\frac{2c+5d}{3c-4d}\left(đpcm\right)\)

Vậy...

nguyen thi chau anh
Xem chi tiết
Đinh Tuấn Việt
4 tháng 9 2015 lúc 17:24

Xem ở Giúp tôi giải toán - Hỏi đáp, thảo luận về toán học - Học toán với OnlineMath

sdhsdfgh
Xem chi tiết
Nguyễn Hoàng Minh
14 tháng 10 2021 lúc 16:49

a, Áp dụng t/c dtsbn:

\(\dfrac{a}{b}=\dfrac{c}{d}\Rightarrow\dfrac{a}{c}=\dfrac{b}{d}=\dfrac{a+b}{c+d}=\dfrac{a-b}{c-d}\Rightarrow\dfrac{a+b}{a-b}=\dfrac{c+d}{c-d}\)

b, Áp dụng t/c dtsbn:

\(\dfrac{a}{b}=\dfrac{c}{d}\Rightarrow\dfrac{a}{c}=\dfrac{b}{d}=\dfrac{2a}{2c}=\dfrac{5b}{5d}=\dfrac{3a}{4c}=\dfrac{4b}{4d}=\dfrac{2a+5b}{2c+5d}=\dfrac{3a-4b}{3c-4d}\Rightarrow\dfrac{2a+5b}{3a-4b}=\dfrac{2c+5d}{3c-4d}\)

 

 

Nguyễn Hoàng Minh
14 tháng 10 2021 lúc 16:54

c, Đặt \(\dfrac{a}{b}=\dfrac{c}{d}=k\Rightarrow a=bk;c=dk\)

Ta có \(\dfrac{ab}{cd}=\dfrac{bk\cdot b}{dk\cdot d}=\dfrac{b^2k}{d^2k}=\dfrac{b^2}{d^2}\)

\(\dfrac{\left(a-b\right)^2}{\left(c-d\right)^2}=\dfrac{\left(bk-b\right)^2}{\left(dk-d\right)^2}=\dfrac{b^2\left(k-1\right)^2}{d^2\left(k-1\right)^2}=\dfrac{b^2}{d^2}\)

Do đó \(\dfrac{ab}{cd}=\dfrac{\left(a-b\right)^2}{\left(c-d\right)^2}\)

d, Đặt \(\dfrac{a}{b}=\dfrac{c}{d}=k\Rightarrow a=bk;c=dk\)

Ta có \(\dfrac{ac}{bd}=\dfrac{bk\cdot dk}{bd}=k^2\)

\(\dfrac{a^2+c^2}{b^2+d^2}=\dfrac{b^2k^2+d^2k^2}{b^2+d^2}=\dfrac{k^2\left(b^2+d^2\right)}{b^2+d^2}=k^2\)

Do đó \(\dfrac{ac}{bd}=\dfrac{a^2+c^2}{b^2+d^2}\)

huỳnh ngọc anh
Xem chi tiết

Đặt \(\frac{a}{b}=\frac{c}{d}=k\)

=>a=bk; c=dk

a: \(\frac{2a+5b}{3a-4b}=\frac{2\cdot bk+5b}{3\cdot bk-4b}=\frac{b\left(2k+5\right)}{b\left(3k-4\right)}=\frac{2k+5}{3k-4}\)

\(\frac{2c+5d}{3c-4d}=\frac{2\cdot dk+5d}{3\cdot dk-4d}=\frac{d\left(2k+5\right)}{d\left(3k-4\right)}=\frac{2k+5}{3k-4}\)

Do đó: \(\frac{2a+5b}{3a-4b}=\frac{2c+5d}{3c-4d}\)

b: \(\frac{3a+7b}{5a-7b}=\frac{3\cdot bk+7b}{5\cdot bk-7b}=\frac{b\left(3k+7\right)}{b\left(5k-7\right)}=\frac{3k+7}{5k-7}\)

\(\frac{3c+7d}{5c-7d}=\frac{3\cdot dk+7d}{5\cdot dk-7d}=\frac{d\left(3k+7\right)}{d\left(5k-7\right)}=\frac{3k+7}{5k-7}\)

Do đó: \(\frac{3a+7b}{5a-7b}=\frac{3c+7d}{5c-7d}\)

d: \(\frac{4a+9b}{4a-7b}=\frac{4\cdot bk+9b}{4\cdot bk-7b}=\frac{b\left(4k+9\right)}{b\left(4k-7\right)}=\frac{4k+9}{4k-7}\)

\(\frac{4c+9d}{4c-7d}=\frac{4\cdot dk+9d}{4\cdot dk-7d}=\frac{d\left(4k+9\right)}{d\left(4k-7\right)}=\frac{4k+9}{4k-7}\)

Do đó: \(\frac{4a+9b}{4a-7b}=\frac{4c+9d}{4c-7d}\)

Nguyen Duc Huy
Xem chi tiết
bao quynh Cao
19 tháng 7 2015 lúc 13:46

a)  đặt \(\frac{a}{b}=\frac{c}{d}=k\Leftrightarrow a=b.k;c=d.k\)

          \(\frac{3a+2c}{3b+2d}=\frac{3b.k+2.d.k}{3b+2d}=\frac{k\left(3b+2d\right)}{3b+2d}=k\)

    b)          bó tay

Thuy Khuat
Xem chi tiết
Phúc Trần
21 tháng 11 2017 lúc 20:02

Ta có:

\(\dfrac{a}{b}=\dfrac{c}{d}\Rightarrow\dfrac{a}{c}=\dfrac{b}{d}\)

\(\Rightarrow\dfrac{a}{c}=\dfrac{b}{d}=\dfrac{2a+5b}{2c+5d}\)

\(\dfrac{a}{c}=\dfrac{b}{d}=\dfrac{3a-4b}{3c-4d}\)

\(\Rightarrow\dfrac{2a+5b}{2c+5d}=\dfrac{3a-4b}{3c-4d}=\dfrac{a}{c}=\dfrac{b}{d}\)

\(\Rightarrow\dfrac{2a+5b}{3a-4b}=\dfrac{2c+5d}{3c-4d}\left(dpcm\right)\)

Phương Trâm
21 tháng 11 2017 lúc 20:05

Đặt \(\dfrac{a}{b}=\dfrac{c}{d}=k\)

\(\Rightarrow\left[{}\begin{matrix}a=bk\\c=dk\end{matrix}\right.\) \(\Rightarrow\dfrac{2bk+5b}{3bk-4b}=\dfrac{2dk+5d}{3dk-4d}\)

\(VT=\dfrac{2a+5b}{3a-4b}=\dfrac{2bk+5b}{3bk-4b}=\dfrac{b\left(2k+5\right)}{b\left(3k-4\right)}=\dfrac{2k+5}{3k-4}\left(1\right)\)

\(VP=\dfrac{2c+5d}{3c-4d}=\dfrac{2dk+5d}{3dk-4d}=\dfrac{d\left(2k+5\right)}{d\left(3k-4\right)}=\dfrac{2k+5}{3k-4}\left(2\right)\)

Từ \(\left(1\right)\)\(\left(2\right)\) \(\Rightarrow\) Đpcm.

Đỗ Minh Phúc
Xem chi tiết
Đỗ Khánh  Vy
24 tháng 8 2021 lúc 15:54

có học mà bạn

Khách vãng lai đã xóa
Hue Nguyen
24 tháng 8 2021 lúc 15:56

đặt \(\frac{a}{b}\)=  \(\frac{c}{d}=k\Rightarrow\hept{\begin{cases}k=ab\\k=cd\end{cases}}\)

ta có :   \(\frac{7a-4b}{3a+5b}\)\(\frac{7ak-4b}{3ak-5b}=\frac{a\left(7k-4\right)}{a\left(3k-5\right)}=\frac{7k-4}{3k-5}\left(1\right)\)

\(\frac{7c-4d}{3c+5d}\)=\(\frac{7ck-4d}{3ck+5d}\)\(\frac{c\left(7k-4\right)}{c\left(3k+5\right)}\)\(\frac{7k-4}{3k+5}\)(  2 ) 

từ (1) và ( 2) => \(\frac{7a-4b}{3a+5b}=\frac{7c-4d}{3c+5d}\)( điều phải chứng minh ) 

Khách vãng lai đã xóa
Đỗ Khánh  Vy
24 tháng 8 2021 lúc 16:00

bài này có đúng ko vậy

undefined

Khách vãng lai đã xóa
nguyễn văn hà
Xem chi tiết
Đào An
Xem chi tiết