Ta có:
\(\dfrac{a}{b}=\dfrac{c}{d}\Rightarrow\dfrac{a}{c}=\dfrac{b}{d}\)
\(\Rightarrow\dfrac{a}{c}=\dfrac{b}{d}=\dfrac{2a+5b}{2c+5d}\)
\(\dfrac{a}{c}=\dfrac{b}{d}=\dfrac{3a-4b}{3c-4d}\)
\(\Rightarrow\dfrac{2a+5b}{2c+5d}=\dfrac{3a-4b}{3c-4d}=\dfrac{a}{c}=\dfrac{b}{d}\)
\(\Rightarrow\dfrac{2a+5b}{3a-4b}=\dfrac{2c+5d}{3c-4d}\left(dpcm\right)\)
Đặt \(\dfrac{a}{b}=\dfrac{c}{d}=k\)
\(\Rightarrow\left[{}\begin{matrix}a=bk\\c=dk\end{matrix}\right.\) \(\Rightarrow\dfrac{2bk+5b}{3bk-4b}=\dfrac{2dk+5d}{3dk-4d}\)
\(VT=\dfrac{2a+5b}{3a-4b}=\dfrac{2bk+5b}{3bk-4b}=\dfrac{b\left(2k+5\right)}{b\left(3k-4\right)}=\dfrac{2k+5}{3k-4}\left(1\right)\)
\(VP=\dfrac{2c+5d}{3c-4d}=\dfrac{2dk+5d}{3dk-4d}=\dfrac{d\left(2k+5\right)}{d\left(3k-4\right)}=\dfrac{2k+5}{3k-4}\left(2\right)\)
Từ \(\left(1\right)\) và \(\left(2\right)\) \(\Rightarrow\) Đpcm.