Tính giá trị của đa thức sau:
x^14 - 13x^13+13x^12-13x^11+... +13x^2-13x +1 với x=14
Tính giá trị của đa thức sau:
\(P(x)= x^7 - 8ax^6+80x^5-80x^4+...+80x+ 15 \)với x= 79
\(S(x)= x^10 -13x^9+13x^8-13x^7+...+13x^2-13x+10\)với x= 12
x = 79 => 80 = x + 1 thay vòa Px ta có
P(x) = x^7 - ( x + 1) x^6 + .... + (x + 1) x + 15
= x^7 - x^7- x^6 + ... + x^2 + x +15
= x + 15
= 79 + 15
= 94
Ý B tương tự
Giá trị của đa thức:
x^10-13x^9+13x^8-13x^7+...+13x^2-13x-14 với x=12
x10 - 13x9 + 13x8 - ... - 13x + 13
= (x10 - 12x9) + (- x9 + 12x8) + ... + (- x + 12) + 1
= x9(x - 12) + x8(- x + 12) +...+ (- x + 12) + 1 = 1
Bạn tự sửa nhé mình nhầm - 14 thành 13
Tìm giá trị lớn nhất của biểu thức P(x) = -x2 +13x+ 2012
\(P\left(x\right)=-x^2+13x+2012=-x^2+2.\dfrac{13}{2}x-\dfrac{169}{4}+2054\dfrac{1}{4}\)
\(=-\left(x^2-2.\dfrac{13}{2}x+\dfrac{169}{4}\right)+2054\dfrac{1}{4}=-\left(x-\dfrac{13}{2}\right)^2+2054\dfrac{1}{4}\)
Do \(-\left(x-\dfrac{13}{2}\right)^2\le0\left(\forall x\right)\Rightarrow-\left(x-\dfrac{13}{2}\right)^2+2054\dfrac{1}{4}\le2054\dfrac{1}{4}\left(\forall x\right)\)
Dấu "=" xảy ra \(\Leftrightarrow-\left(x-\dfrac{13}{2}\right)^2=0\Leftrightarrow x=\dfrac{13}{2}\)
Vậy\(MaxA=254\dfrac{1}{4}\Leftrightarrow x=\dfrac{13}{2}\)
Ta có: P = \(-x^2 + 13x + 2012 \)
= \(\left(-x^2+2.x.\dfrac{13}{2}-\dfrac{169}{4}\right)+\dfrac{8217}{4}\)
= \(-\left(x^2-2.x.\dfrac{13}{2}+\dfrac{169}{4}\right)+\dfrac{8217}{4}\)
\(=-\left(x-\dfrac{13}{2}\right)^2+\dfrac{8217}{4}\) \(\leq\) \(\dfrac{8217}{4}\)
Dấu "=" xảy ra khi \(x-\dfrac{13}{2}=0\) \(\Leftrightarrow \) \(x=\dfrac{13}{2}\)
Vậy giá trị lớn nhất của P = \(\dfrac{8217}{4}\) khi x = \(\dfrac{13}{2}\)
Tính giá trị của đa thức
a) P(x)= x^7 - 80x^6 + 80x^5 - 80x^4+....+80x +15 với x=79
b) Q(x)= x^14 - 10x^13 +10x^12-10x^11+...+10x^2-10x+10 với x=9
c) R(x)=x^4-17x^3+17x^2-17x+20 với x=16
d) S(x)=x^10 -13x^9+13x^8-13x^7+...+13x^2-13x+10 với x=12
Mọi người giúp em bài này với , em đang cần gấp lắm ạ! Em cảm ơn mọi người trc ạ! Mọi người làm hộ em vs ạ
\(Q_{\left(x\right)}=x^{14}-10x^{13}+10x^{12}-10x^{11}+...+10x^2-10x+10\)
\(=x^{14}-\left(x+1\right)x^{13}+\left(x+1\right)x^{12}-\left(x+1\right)x^{11}+..+\left(x+1\right)x^2-\left(x+1\right)x+x+1\)
\(=x^{14}-x^{14}-x^{13}+x^{13}+x^{12}-x^{12}-x^{11}+...+x^3+x^2-x^2-x+x+1\)
\(=1\)
\(a.P(x)=x^7-80x^6+80x^5-80x^4+....+80x+15\)
\(=x^7-79x^6-x^6+79x^5+x^5-79x^4-....-x^2+79x+x+15\)
\(=x^6(x-79)-x^5(x-79)+x^4(x-79)-....-x(x-79)+x+15\)
\(=(x-79)(x^6-x^5+x^4-....-x)+x+15\)
Thay x = 79 vào biểu thức trên , ta có
\(P(79)=(79-79)(79^6-79^5+79^4-...-79)+79+15\)
\(=0+79+15\)
\(=94\)
Vậy \(P(x)=94\)khi x = 79
\(b.Q(x)=x^{14}-10x^{13}+10x^{12}-.....+10x^2-10x+10\)
\(=x^{14}-9x^{13}-x^{13}+9x^{12}+.....-x^3+9x^2+x^2-9x-x+10\)
\(=x^{13}(x-9)-x^{12}(x-9)+.....-x^2(x-9)+x(x-9)-x+10\)
\(=(x-9)(x^{13}-x^{12}+.....-x^2+x)-x+10\)
Thay x = 9 vào biểu thức trên , ta có
\(Q(9)=(9-9)(9^{13}-9^{12}+.....-9^2+9)-9+10\)
\(=0-9+10\)
\(=1\)
Vậy \(Q(x)=1\)khi x = 9
\(c.R(x)=x^4-17x^3+17x^2-17x+20\)
\(=x^4-16x^3-x^3+16x^2+x^2-16x-x+20\)
\(=x^3(x-16)-x^2(x-16)+x(x-16)-x+20\)
\(=(x-16)(x^3-x^2+x)-x+20\)
Thay x = 16 vào biểu thức trên , ta có
\(R(16)=(16-16)(16^3-16^2+16)-16+20\)
\(=0-16+20\)
\(=4\)
Vậy \(R(x)=4\)khi x = 16
\(d.S(x)=x^{10}-13x^9+13x^8-13x^7+.....+13x^2-13x+10\)
\(=x^{10}-12x^9-x^9+12x^8+.....+x^2-12x-x+10\)
\(=x^9(x-12)-x^8(x-12)+....+x(x-12)-x+10\)
\(=(x-12)(x^9-x^8+....+x)-x+10\)
Thay x = 12 vào biểu thức trên , ta có
\(S(12)=(12-12)(12^9-12^8+....+12)-12+10\)
\(=0-12+10\)
\(=-2\)
Vậy \(S(x)=-2\)khi x = 12
Hình như đây là toán lớp 7 có trong phần trắc nghiệm của thi HSG huyện
Chúc bạn học tốt , nhớ kết bạn với mình
1) Tính giá trị của đa thức
a) P(x) = x7 - 80x6 + 80x5 - 80x4 +...+ 80x + 15 với x = 79
b) Q(x) = x14 - 10x13 + 10x12 - 10x11 +...+ 10x2 - 10x + 10 với x = 9
c) R(x) = x4 - 17x3 + 17x2 - 17x + 20 với x = 16
d) S(x) = x10 - 13x9 + 13x8 - 13x7 +...+ 13x2 - 13x + 10 với x = 12
a, x = 79 => x + 1 = 80
Ta có:\(P\left(x\right)=x^7-80x^6+80x^5-80x^4+...+80x+15\)
\(=x^7-\left(x+1\right)x^6+\left(x+1\right)x^5-\left(x+1\right)x^4+...+\left(x+1\right)x+15\)
\(=x^7-x^7-x^6+x^6+x^5-x^5-x^4+...+x^2+x+15\)
\(=x+15=79+15=94\)
Còn lại tương tự
\(Q_{\left(x\right)}=x^{14}-10x^{13}+10x^{12}-10x^{11}+...+10x^2-10x+10\)
\(=x^{14}-\left(x+1\right)x^{13}+\left(x+1\right)x^{12}-\left(x+1\right)x^{11}+..+\left(x+1\right)x^2-\left(x+1\right)x+x+1\)
\(=x^{14}-x^{14}-x^{13}+x^{13}+x^{12}-x^{12}-x^{11}+...+x^3+x^2-x^2-x+x+1\)
\(=1\)
1) Tính giá trị của đa thức
a) P(x) = x7 - 80x6 + 80x5 - 80x4 +...+ 80x + 15 với x = 79
b) Q(x) = x14 - 10x13 + 10x12 - 10x11 +...+ 10x2 - 10x + 10 với x = 9
c) R(x) = x4 - 17x3 + 17x2 - 17x + 20 với x = 16
d) S(x) = x10 - 13x9 + 13x8 - 13x7 +...+ 13x2 - 13x + 10 với x = 12
Lời giải:
a) Với \(x=79\)
\(P(x)=x^7-80x^6+80x^5-80x^4+...+80x+15\)
\(=(x^7-79x^6)-(x^6-79x^5)+(x^5-79x^4)-....-(x^2-79x)+x+15\)
\(=x^6(x-79)-x^5(x-79)+x^4(x-79)-...-x(x-79)+x+15\)
\(=(x^6-x^5+x^4-...-x)(x-79)+x+15\)
\(=(x^6-x^5+x^4-...-x)(79-79)+79+15=79+15=94\)
b) Hoàn toàn tương tự phần a.
\(Q(x)=(x^{14}-9x^{13})-(x^{13}-9x^{12})+(x^{12}-9x^{11})-...+(x^2-9x)-x+10\)
\(=x^{13}(x-9)-x^{12}(x-9)+x^{11}(x-9)-...+x(x-9)-x+10\)
\(=(x-9)(x^{13}-x^{12}+x^{11}-...+x)-x+10\)
\(=(9-9)(x^{13}-x^{12}+...+x)-9+10=0-9+10=1\)
c)
\(R(x)=(x^4-16x^3)-(x^3-16x^2)+(x^2-16x)-x+20\)
\(=x^3(x-16)-x^2(x-16)+x(x-16)-x+20\)
\(=(x-16)(x^3-x^2+x)-x+20\)
Với $x=16$ thì $Q(x)=(16-16)(x^3-x^2+x)-16+20=0-16+20=4$
d)
\(S(x)=(x^{10}-12x^9)-(x^9-12x^8)+(x^8-12x^7)-....+x(x-12)-x+10\)
\(=x^9(x-12)-x^8(x-12)+x^7(x-12)-...+x(x-12)-x+10\)
\(=(x-12)(x^9-x^8+x^7-..+x)-x+10\)
\(=(12-12)(x^9-x^8+x^7-...+x)-12+10=-12+10=-2\)
Tính g(12) biết g(x) = x14 - 13x13 + 13x12 - ...+ 13x2 -13x + 15 ?
Huhu cứu tôi với mai thi rồi !!!
g(x) = x14 - 13x13 + 13x12 - 13x11 + ... + 13x2 - 13x + 15
= x14 - (12 + 1)x13 + (12 + 1)x12 - (12 + 1)x11 + ... + (12 + 1)x2 - (12 + 1)x + 15
Tại x = 12 thì ta có:
g(12) = x14 - (x + 1)x13 + (x + 1)x12 - (x + 1)x11 + ... + (x + 1)x2 - (x + 1)x + 15
= x14 - x14 - x13 + x13 + x12 - x12 - x11 + ... + x3 + x2 - x2 - x + 15
= -x + 15
Thay x = 12, ta có:
g(12) = -12 + 15 = 3
Vậy g(12) = 3
g(x) = x14 - (12 + 1)x13 + (12 + 1)x12 - (12 + 1)x11 + ... + (12 + 1)x2 - (12 + 1)x + 15
Tại x = 12 thì ta có:
g(12) = x14 - (x + 1)x13 + (x + 1)x12 - (x + 1)x11 + ... + (x + 1)x2 - (x + 1)x + 15
= x14 - x14 - x13 + x13 + x12 - x12 - x11 + ... + x3 + x2 - x2 - x + 15
= -x + 15
Thay x = 12, ta có:
g(12) = -12 + 15 = 3
Vậy g(12) = 3
Tính giá trị của đa thức:
S (x) = x10 - 13x9 + 13x8 - 13x7 +...+ 13x2 - 13x + 10 với x =12
S(x) = x^9(x - 12) -x^8(x - 12) + x^7(x - 12) + . . . +x(x-12) - (x - 12) - 2
Suy ra: S(x) = -2
Tính đạo hàm của hàm số sau y = 1 4 - 1 3 x + x 2 - 0 , 5 x 4