Chứng minh a2 + b2 lớn hơn hoặc bằng 1/2 với a+b lớn hơn hoặc bằng 1.
Chứng minh a2 + b2 lớn hơn hoặc bằng 1/2 với a+b lớn hơn hoặc bằng 1.
Áp dụng BĐT Bunhiacopski, ta có:
a2 + b2 >= (a + b)2/2 >= 12/2 = 1/2 (đpcm)
Dấu bằng xảy ra khi a = b = 1/2
cho a,b,c lớn hơn hoặc bằng căn 3 thỏa mãn a2+b2+c2 =3 Chứng minh a+b+c lơn hơn hoặc bằng căn 3
1)Với x>-3.Chứng minh :2x/3 + 9/(x-3)^2 lớn hơn hoặc bằng 1
2)Cho a lớn hơn hoặc bằng 3,ab lớn hơn hoặc bằng 6;abc lớn hơn hoặc bằng 6.Chứng minh rằng a+b+c lớn hơn hoặc bằng 6
1) Đề sai, thử với x = -2 là thấy không thỏa mãn.
Giả sử cho rằng với đề là x không âm thì áp dụng BĐT Cauchy:
\(A=\)\(\frac{2x}{3}+\frac{9}{\left(x-3\right)^2}=\frac{x-3}{3}+\frac{x-3}{3}+\frac{9}{\left(x-3\right)^2}+2\)
\(A\ge3\sqrt[3]{\frac{\left(x-3\right).\left(x-3\right).9}{3.3.\left(x-3\right)^2}}+2=3+2=5>1\)
Không thể xảy ra dấu đẳng thức.
1.Với a> hoặc bằng 1,b lớn hơn hoặc bằng 1 chứng minh (1/1+a^2)+ (1/1+b^2) lớn hơn hoặc bằng 2/1+ab
2.Với a > hoặc bằng 1,b lớn hơn hoặc bằng 1,c lớn hơn hoặc bằng 1 chứng minh (1/1+a^2) +(1/1+b^2)+ (1/1+c^2) lớn hơn hoặc bằng 3/1+abc
3.Cho a,b,c >0 và a< hoặc bằng 1, b/2+a < hoặc bằng 2, c/3+b/2+a < hoặc bằng 3.Tìm Min P=1/a +1/b + 1/c
Giusp e với ạ.Cần lắm ạ.
1.Với a> hoặc bằng 1,b lớn hơn hoặc bằng 1 chứng minh (1/1+a^2)+ (1/1+b^2) lớn hơn hoặc bằng 2/1+ab
2.Với a > hoặc bằng 1,b lớn hơn hoặc bằng 1,c lớn hơn hoặc bằng 1 chứng minh (1/1+a^2) +(1/1+b^2)+ (1/1+c^2) lớn hơn hoặc bằng 3/1+abc
3.Cho a,b,c >0 và a< hoặc bằng 1, b/2+a < hoặc bằng 2, c/3+b/2+a < hoặc bằng 3.Tìm Min P=1/a +1/b + 1/c
Giusp e với ạ.Cần lắm ạ.
Chứng minh rằng: a2 + b2 + c2 + d2 (>= lớn hơn hoặc bằng) ab+ac+ad
-Áp dụng BĐT AM-GM ta có:
\(\left\{{}\begin{matrix}\dfrac{1}{4}a^2+b^2\ge ab\\\dfrac{1}{4}a^2+c^2\ge ac\\\dfrac{1}{4}a^2+d^2\ge ad\end{matrix}\right.\)
-Cộng các vế, ta được:
\(\dfrac{3}{4}a^2+b^2+c^2+d^2\ge ab+ac+ad\)
\(\Rightarrow\dfrac{3}{4}a^2+b^2+c^2+d^2+\dfrac{1}{4}a^2\ge ab+ac+ad\) (vì \(\dfrac{1}{4}a^2\ge0\forall a\))
\(\Leftrightarrow a^2+b^2+c^2+d^2\ge ab+ac+ad\left(đpcm\right)\)
-Dấu "=" xảy ra khi \(a=b=c=d=0\)
Chứng minh với (a,b) =1 thì ước số chung lớn nhất của a+b và a2+ b2 bằng 1 hoặc 2.
a,Cho A +B lớn hơn hoặc bằng 1.Chứng minh A^2 + B^2 lớn hơn hoặc bằng 1
b,Cho x^2 + y^2 =1.Chứng minh (x+y)^2 nhỏ hơn hoặc bằng 2
Câu a)
Ta có a + b \(\ge\)1 => a \(\ge\) 1 - b
Nên a2 + b2 \(\ge\) (1 - b)2 + b2 = 2b2 - 2b + 1 = 2(b2 - 2b.1/2 + 1/4 + 1/2) = 2(b - 1/2)2 + 1 \(\ge\) 1
Câu b) Áp dụng BĐT Bunhiacopxki ta có
(x + y)2 = (1.x + 1.y)2 \(\le\) (12 + 12)(x2 + y2) = 2.1 = 2
Dấu "=" xảy ra <=> x = y
câu1 : cần sửa lại là A2 + B2 \(\ge\frac{1}{2}\)
Ta chứng minh được : (A+B)2 \(\le2.\left(A^2+B^2\right)\) (*)
<=> A2 + B2 + 2A.B \(\le\) 2. (A2 + B2)
<=> 0 \(\le\) A2 + B2 - 2.A.B <=> 0 \(\le\) (A-B)2 luôn đúng => (*) đúng
b) Áp sung câu a => (x+y)2 \(\le\)2.(x2 + y2) = 2 => đpcm
B1:Cho a>0, a2=bc a+b+c=abc
Cmr: a lớn hơn hoặc bằng căn 3,b>0,c>0,b2+c2 lớn hơn hoặc bằng 2a2
B2: Cho hệ
a2+b2+c2=2
ab+bc+ca=1
Cmr: a,b,c thuộc {-4/3;4/3}
Trả lời giúp mk với .. tối mk học lẹ rồi
Thanks các bạn nhiều