A=1/2.3+1/3.4+...+1/99.100
B+5/1.4+5/4.7+...+5/100.103
C=4/2.4+4/4.6+4/6.8+....+4/2008.2010
1. Tính tổng
a, A=1/2.3 + 1/3.4 + ... + 1/99.100
b, B= 5/1.4 + 5/4.7 + ... + 5/100.103
c, C= 1/15 +1/35 + ... + 1/2499
d, D=1/1.6 + 1/6.11 + 1/11.16 + ... +1/(5n+1).(5n+6)
mn ơi mình đang cần gấp
a: =1/2-1/3+1/3-1/4+...+1/99-1/100
=1/2-1/100=49/100
b; =5/3(1-1/4+1/4-1/7+...+1/100-1/103)
=5/3*102/103
=510/309=170/103
c: =1/2(1/3-1/5+1/5-1/7+...+1/49-1/51)
=1/2*16/51=8/51
Tính giá trị biểu thức
a) 2/5.1/3-2/15:1/5+3/5.1/3
b) 4/2.4+4/4.6+4/6.8+....+4/2008.2010
\(\frac{2}{5}:\frac{1}{3}-\frac{2}{15}:\frac{1}{5}+\frac{3}{5}.\frac{1}{3}\)
\(=\frac{6}{5}+\frac{-2}{3}+\frac{1}{5}\)
\(=\frac{11}{15}\)
~ Hok tốt ~
\(\frac{4}{2.4}+\frac{4}{4.6}+\frac{4}{6.8}+...+\frac{4}{2008.2010}\)
\(=4.\left(\frac{1}{2.4}+\frac{1}{4.6}+\frac{1}{6.8}+...+\frac{1}{2008.2010}\right)\)
\(=4.\left(\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+\frac{1}{6}-\frac{1}{8}+...+\frac{1}{2008}-\frac{1}{2010}\right)\)
\(=4.\left[\frac{1}{2}+\left(\frac{1}{4}-\frac{1}{4}\right)+\left(\frac{1}{6}-\frac{1}{6}\right)+\left(\frac{1}{8}-\frac{1}{8}\right)+...+\left(\frac{1}{2008}-\frac{1}{2008}\right)-\frac{1}{2010}\right]\)
\(=4.\left[\frac{1}{2}-\frac{1}{2010}\right]\)
\(=4.\frac{502}{1005}=\frac{2008}{1005}\)
~ Hok tốt ~
b, \(\frac{4}{2.4}+\frac{4}{4.6}+\frac{4}{6.8}+...+\frac{4}{2008.2010}\)
\(=2\left(\frac{2}{2.4}+\frac{2}{4.6}+\frac{2}{6.8}+...+\frac{2}{2008.2010}\right)\)
\(=2\left(\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+\frac{1}{6}-\frac{1}{8}+...+\frac{1}{2008}-\frac{1}{2010}\right)\)
\(=2\left(\frac{1}{2}-\frac{1}{2010}\right)\)
\(=2.\frac{502}{1005}\)
\(=\frac{1004}{1005}\)
Study well ! >_<
Tính giá trị của biểu thức:
\(A=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2009.2010}\)
\(B=\frac{4}{2.4}+\frac{4}{4.6}+\frac{4}{6.8}+...+\frac{4}{2008.2010}\)
\(C=\frac{1}{18}+\frac{1}{54}+\frac{1}{108}+....+\frac{1}{990}\)
dễ mà bạn làm từ câu a nếu ra thì các câu khác cũng dễ thôi
\(A=\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+....+\frac{1}{2009\cdot2010}\)
\(A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{2009}-\frac{1}{2010}\)
\(A=1-\frac{1}{2010}\)
\(A=\frac{2009}{2010}\)
Tính Tổng
a) 2/1.3+2/3.5+2/5.7.... 2/99.101
b) 5/1.3+5/3.5+5/5.7+...+5/99.101
c) 4/2.4+4/4.6+4/6.8+...+4/2008.2010
a) =1-1/3+1/3-1/5+1/5-1/7+...+1/99-1/101
=1-1/101
=100/101
b) =(2/1.3+2/3.5+2/5.7+...+2/99.101).2,5
=(1-1/3+1/3-1/5+1/5-1/7+...+1/99-1/101).2,5
=(1-1/101).2,5
=100/101.2,5
=250/101
c) =(2/2.4+2/4.6+2/6.8+...+2/2008-2/2010).2
=(1/2-1/4+1/4-1/6+1/6-1/8+...+1/2008-1/2010).2
=(1/2-1/2010).2
=1004/1005
tính:
1/25.27+1/27.29+1/29.31+...+1/73.75
4/2.4 + 4/4.6 +4/6.8 +...+ 4/2008.2010
a, \(\frac{1}{25.27}+\frac{1}{27.29}+...+\frac{1}{73.75}\)
\(=\frac{1}{2}\left(\frac{2}{25.27}+\frac{2}{27.29}+...+\frac{2}{73.75}\right)\)
\(=\frac{1}{2}\left(\frac{1}{25}-\frac{1}{27}+\frac{1}{27}-\frac{1}{29}+...+\frac{1}{73}-\frac{1}{75}\right)\)
\(=\frac{1}{2}\left(\frac{1}{25}-\frac{1}{75}\right)\)
\(=\frac{1}{2}\left(\frac{2}{75}\right)\)
\(=\frac{1}{75}\)
b, \(\frac{4}{2.4}+\frac{4}{4.6}+\frac{4}{6.8}+...+\frac{4}{2008.2010}\)
\(=2\left(\frac{2}{2.4}+\frac{2}{4.6}+\frac{2}{6.8}+...+\frac{2}{2008.2010}\right)\)
\(=2\left(\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+\frac{1}{6}-\frac{1}{8}+...+\frac{1}{2008}-\frac{1}{2010}\right)\)
\(=2\left(\frac{1}{2}-\frac{1}{2010}\right)\)
\(=2\left(\frac{1004}{2010}\right)\)
\(=2\left(\frac{502}{1005}\right)\)
\(=\frac{1004}{1005}\)
Tk hộ =v
\(\frac{1}{25.27}+\frac{1}{27.29}+\frac{1}{29.31}+...+\frac{1}{73.75}=\frac{1}{2}.\left(\frac{2}{25.27}+\frac{2}{27.29}+\frac{2}{29.31}+...+\frac{2}{73.75}\right)\)
\(=\frac{1}{2}.\left(\frac{1}{25}-\frac{1}{27}+\frac{1}{27}-\frac{1}{29}+\frac{1}{29}-\frac{1}{31}+...+\frac{1}{73}-\frac{1}{75}\right)=\frac{1}{2}.\left(\frac{1}{25}-\frac{1}{75}\right)=\frac{1}{2}.\frac{2}{75}=\frac{1}{75}\)
\(\frac{4}{2.4}+\frac{4}{4.6}+\frac{4}{6.8}+...+\frac{4}{2008.2010}=2.\left(\frac{2}{2.4}+\frac{2}{4.6}+\frac{2}{6.8}+...+\frac{2}{2008.2010}\right)\)
\(=2.\left(\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+\frac{1}{6}-\frac{1}{8}+...+\frac{1}{2008}-\frac{1}{2010}\right)=2.\left(\frac{1}{2}-\frac{1}{2010}\right)=2.\frac{502}{1005}=\frac{1004}{1005}\)
\(\frac{1}{25.27}+\frac{1}{27.29}+\frac{1}{29.31}+...+\frac{1}{73.75}\)
\(=\frac{1}{2}.\left(\frac{2}{25.27}+\frac{2}{27.29}+\frac{2}{29.31}+...+\frac{2}{73.75}\right)\)
\(=\frac{1}{2}.\left(\frac{1}{25}-\frac{1}{27}+\frac{1}{27}-\frac{1}{29}+\frac{1}{29}-\frac{1}{31}+...+\frac{1}{73}-\frac{1}{75}\right)\)
\(=\frac{1}{2}.\left(\frac{1}{25}-\frac{1}{75}\right)\)
\(=\frac{1}{2}.\left(\frac{3}{75}-\frac{1}{75}\right)\)
\(=\frac{1}{2}.\frac{2}{75}\)
\(=\frac{1}{75}\)
Câu dưới đặt 2 ra ngoài rồi làm bình thường.
Bài tập: Tính tổng
a) A = 1.2+2.3+3.4+...+98.99
b) B = 1.3+3.5+5.7+...+99.101
c) S = 1.4+4.7+7.10+...+2017.2020
d) E= 2.4+4.6+6.8+...+98.100
e) S= 1.2.3+2.3.4+3.4.5+...+98.99.100
f) S= 1.2.3.4+2.3.4.5+3.4.5.6+...+19.20.21.22
a/
3A=1.2.3+2.3.3+3.4.3+...+98.99.3=
=1.2.3+2.3.(4-1)+3.4.(5-2)+...+98.99.(100-97)=
=1.2.3-1.2.3+2.3.4-2.3.4+3.4.5-...-97.98.99+98.99.100=
=98.99.100=> A=98.33.100
b
6B=1.3.6+3.5.6+5.7.6+...+99.101.6=
=1.3.(5+1)+3.5.(7-1)+5.7.(9-3)+...+99.101.(103-97)=
=1.3+1.3.5-1.3.5+3.5.7-3.5.7+5.7.9-...-97.99.101+99.101.103=
=1.3+99.101.103=> (3+99.101.103):6
c/
9S=1.4.9+4.7.9+7.10.9+...+2017.2020.9=
=1.4.(7+2)+4.7.(10-1)+7.10.(13-4)+...+2017.2020.(2023-2014)=
=1.2.4+1.4.7-1.4.7+4.7.10--4.7.10+7.10.13-...-2014.2017.2020+2017.2020.2023=
=1.2.4+2017.2020.2023=> S=(2.4+2017.2020.2023):9
Dạng tổng quát: tính tổng các tích có quy luật: các thừa số của các tích lập thành dãy số cách đều. các thừa số đầu tiên của số hạng liền sau cũng chính là các thừa số sau cùng của số hạng liền trước thì ta nhân tổng với số k
Số k được tính theo quy luật \(k=\left(n+1\right)xd\)
Trong đó: n: số thừa số của 1 số hạng
d: Khoảng cách giữa hai thừa số liền kề trong mỗi số hạng
Chúc em học tốt
Tính A=4/2.4+4/4.6+4/6.8+....+4/2008.2010
A=4/2.4+4/4.6+4/6.8+...+4/2008.2010
=2.(2/2.4+2/4.6+2/6.8+...+2/2008.2010)
=2.(1/2-1/4+1/4-1/6+1/6-1/8+...+1/2008-1/2010)
=2.(1/2-1/2010)
=2.502/1005
=1004/1005
Vậy A=1004/1005
100% giải đúng đầu tiên:
Ta có: \(A=\frac{4}{2.4}+\frac{4}{4.6}+\frac{4}{6.8}+...+\frac{4}{2008.2010}\)
\(=2.\frac{2}{2.4}+2.\frac{2}{4.6}+2.\frac{2}{6.8}+...+2.\frac{2}{2008.2010}\)
\(=2\left(\frac{2}{2.4}+\frac{2}{4.6}+\frac{2}{6.8}+..+\frac{2}{2008.2010}\right)\)
\(=2\left(\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+\frac{1}{6}-\frac{1}{8}+...+\frac{1}{2008}-\frac{1}{2010}\right)\)
\(=2\left(\frac{1}{2}-\frac{1}{2010}\right)\)
\(=2.\frac{1}{2}-2.\frac{1}{2010}\)
\(=1-\frac{1}{1005}=\frac{1004}{1005}\)
bai1:tinh tong S=1.3+3.5+5.7+...+99.101
bai2 :tinh tong S=1.4+4.7+7.10+...+2017.2020
bai 3: tinh tong N=2.4+4.6+6.8+..+100.102
bai 4: tinh tóng=2.6+6.10+10.14+14.18+...+42.46+50.54
bai 5:tinh tongB=2^2+4^2+6^2+...+100^2
bai 6:C=1^2+3^2+...+100^2
bai7: biet 1^2+2^2+3^2+...+10^2=385 tinh tong 2^2+4^2+6^2+...+20^2
bai 8: tinh tong s=1^2+2^2+3^2+...+99^2
Bài 1 :
\(S=1.3+3.5+5.7+...+99.101=3+15+35+...9999\)
Ta thấy :
\(3=2^2-1\)
\(15=4^2-1\)
\(35=6^2-1\)
.....
\(9999=100^2-1\)
\(\Rightarrow S=2^2+4^2+...+100^2-\left(1\right).\left(\left(100-2\right):2+1\right)\)
\(\Rightarrow S=\dfrac{100.\left(100+1\right)\left(2.100+1\right)}{6}-51\)
\(\Rightarrow S=\dfrac{100.101.201}{6}-51=338299\)
nhanh len nhé mik đang cần gấp ai lam trước mik tích cho
Bài 6 :
\(C=1^2+2^2+...+100^2=\dfrac{100.\left(100+1\right)\left(2.100+1\right)}{6}=\dfrac{100.101.201}{6}=338350\)
Bài 9 :
\(S=1^2+2^2+3^2+...+99^2=\dfrac{99.\left(99+1\right)\left(2.99+1\right)}{6}=\dfrac{99.100.199}{6}=328350\)
K=\(\frac{4}{2.4}\)+\(\frac{4}{4.6}+\frac{4}{6.8}+...+\frac{4}{2008.2010}\)
F=\(\frac{1}{18}+\frac{1}{54}+\frac{1}{108}+...+\frac{1}{990}\)
I=\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2009.2010}\)
\(K=2\left(\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+...+\frac{1}{2008}-\frac{1}{2010}\right)\)
\(K=2\left(\frac{1}{2}-\frac{1}{2010}\right)\)
\(K=2\times\frac{502}{1005}\)
\(K=\frac{1004}{1005}\)
\(F=\frac{1}{3.6}+\frac{1}{6.9}+...+\frac{1}{30.33}\)
\(3F=\frac{1}{3}-\frac{1}{6}+\frac{1}{6}-\frac{1}{9}+...+\frac{1}{30}-\frac{1}{33}\)
\(3F=\frac{1}{3}-\frac{1}{33}\)
\(F=\frac{10}{33}:3\)
\(F=\frac{10}{99}\)
\(I=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{2009}-\frac{1}{2010}\)
\(I=1-\frac{1}{2010}\)
\(I=\frac{2009}{2010}\)