Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Bùi Đức Thắng
Xem chi tiết
Ngọc Lục Bảo
Xem chi tiết
Đinh Anh Thư
6 tháng 1 2016 lúc 0:00

Em mới lớp 6 thui! Anh thông cảm em ko giải đc!

phan quoc
6 tháng 1 2016 lúc 5:49

minh cung the

 

Hà Văn Cảnh
6 tháng 1 2016 lúc 9:50

xét các số có mũ lên vẫn bằng chính nó có -1 và 1.mà -1+1+1=1.nên ta suy ra:a=-1;b=1;c=1.thay vào biểu thức:-1^2011+1^2012+1^2013=1.vậy a^2011+b^2012+c^2013=1.đề dài nên nhiều người lười làm.tick ra thi khó gì

Ngọc Anh Nguyễn
Xem chi tiết
HT.Phong (9A5)
11 tháng 3 2023 lúc 19:21

Đặt: \(\dfrac{a}{2012}=\dfrac{b}{2013}=\dfrac{c}{2014}=k\)

\(\rightarrow a=2012k,b=2013k,c=2014k\)

Vế trái: \(4.\left(2012k-2013k\right)\left(2013k-2014k\right)=4.\left(-1k\right).\left(-1k\right)=4k^2\)

Vế phải: \(\left(2014k-2012k\right)^2=\left(2k\right)^2=4k^2\)

\(\rightarrow\) Vế trái = vế phải = \(4k^2\)

Đoàn Trần Thanh Ngân
Xem chi tiết
Đoàn Trần Thanh Ngân
22 tháng 8 2016 lúc 21:26

chán ghê hk ai giúp hết

Nguyễn Thị Huyền Diệp
Xem chi tiết
Nguyễn Việt Lâm
18 tháng 2 2022 lúc 17:47

\(a^{2012}+b^{2012}+c^{2012}\ge3\sqrt[3]{\left(abc\right)^{2012}}=3\)

\(\Rightarrow\dfrac{1}{a^{2012}+b^{2012}+c^{2012}}\le\dfrac{1}{3}\)

\(\Rightarrow-\dfrac{1}{a^{2012}+b^{2012}+c^{2012}}\ge-\dfrac{1}{3}\)

Lại có:

\(a^{2013}+a^{2013}+...+a^{2013}\left(\text{2012 số hạng}\right)+1\ge2013\sqrt[2013]{\left(a^{2013}\right)^{2012}}=2013.a^{2012}\)

\(\Rightarrow2012.a^{2013}+1\ge2013.a^{2012}\)

Tương tự: \(2012.b^{2013}+1\ge2013.b^{2012}\) ; \(2012.c^{2013}+1\ge2013.c^{2012}\)

Cộng vế với vế:

\(\Rightarrow a^{2013}+b^{2013}+c^{2013}\ge\dfrac{2013\left(a^{2012}+b^{2012}+c^{2012}\right)-3}{2012}\)

\(\Rightarrow A\ge\dfrac{2013\left(a^{2012}+b^{2012}+c^{2012}\right)-3}{2012\left(a^{2012}+b^{2012}+c^{2012}\right)}=\dfrac{2013}{2012}-\dfrac{3}{2012}.\dfrac{1}{a^{2012}+b^{2012}+c^{2012}}\ge\dfrac{2013}{2012}-\dfrac{3}{2012}.\dfrac{1}{3}=1\)

\(A_{min}=1\) khi \(a=b=c=1\)

Phan Anh Thư
Xem chi tiết
Nguyễn Công Tỉnh
6 tháng 1 2019 lúc 21:13

Áp dụng tính chất của dãy tỉ số bằng nhau , ta có :

\frac{a}{2012}=\frac{b}{2013}=\frac{c}{2014}=\frac{a-b}{2012-2013}=\frac{b-c}{2013-2014}=\frac{c-a}{2014-2012}2012a​=2013b​=2014c​=2012−2013ab​=2013−2014bc​=2014−2012ca

\Rightarrow\frac{a-b}{-1}=\frac{b-c}{-1}=\frac{c-a}{2}⇒−1ab​=−1bc​=2ca

\Rightarrow\left(\frac{a-b}{-1}\right)\left(\frac{b-c}{-1}\right)=\left(\frac{c-a}{2}\right)^2⇒(−1ab​)(−1bc​)=(2ca​)2

hay \left(a-b\right)\left(b-c\right)=\frac{\left(c-a\right)^2}{4}(ab)(bc)=4(ca)2​

\Rightarrow4\left(a-b\right)\left(b-c\right)=\left(c-a\right)^2⇒4(ab)(bc)=(ca)2

Nguyễn Công Tỉnh
6 tháng 1 2019 lúc 21:14

Áp dụng tính chất của dãy tỉ số bằng nhau , ta có :

\frac{a}{2012}=\frac{b}{2013}=\frac{c}{2014}=\frac{a-b}{2012-2013}=\frac{b-c}{2013-2014}=\frac{c-a}{2014-2012}

\Rightarrow\frac{a-b}{-1}=\frac{b-c}{-1}=\frac{c-a}{2}

\Rightarrow\left(\frac{a-b}{-1}\right)\left(\frac{b-c}{-1}\right)=\left(\frac{c-a}{2}\right)^2

hay \left(a-b\right)\left(b-c\right)=\frac{\left(c-a\right)^2}{4}

\Rightarrow4\left(a-b\right)\left(b-c\right)=\left(c-a\right)^2

zZz Cool Kid_new zZz
6 tháng 1 2019 lúc 21:15

Đặt \(\frac{a}{2012}=\frac{b}{2013}=\frac{c}{2014}=k\)

\(\Rightarrow a=2012k,b=2013k,c=2014k\)

\(\Rightarrow4\left(a-b\right)\left(b-c\right)=4\left(2012k-2013k\right)\left(2013k-2014k\right)\)

\(=4\left(-k\right)\left(-k\right)\)

\(=4k^2\left(1\right)\)

Mặt khác:\(\left(a-c\right)^2=\left(2012-2014\right)^2\)

\(=\left(2k\right)^2\)

\(=4k^2\left(2\right)\)

Từ (1),(2) suy ra.......

Tiến Hoàng Minh
Xem chi tiết
☆Châuuu~~~(๑╹ω╹๑ )☆
8 tháng 2 2022 lúc 11:21

\(\Rightarrow a,b,c\in\left\{-1;1\right\}\\ \Rightarrow a^3+b^3+c^3-\left(a^2+b^2+c^2\right)\\ =a^2\left(a-1\right)+b^2\left(b-1\right)+c^2\left(c-1\right)\le0\\ \Rightarrow a^3+b^3+c^3\le1\\ \Rightarrow a,b,c.nhận.2.Giá.trị.là.0.hay.1\\ \Rightarrow b^{2012}=b^2;c^{2013}=c^2\\ \Rightarrow S=a^2+b^{2012}+c^{2013}=1\)

Lê Tán Gia Hoàng
8 tháng 2 2022 lúc 11:19

s = e>2025

Quandung Le
Xem chi tiết
Thanh Tùng DZ
17 tháng 12 2017 lúc 17:26

Áp dụng tính chất của dãy tỉ số bằng nhau , ta có :

\(\frac{a}{2012}=\frac{b}{2013}=\frac{c}{2014}=\frac{a-b}{2012-2013}=\frac{b-c}{2013-2014}=\frac{c-a}{2014-2012}\)

\(\Rightarrow\frac{a-b}{-1}=\frac{b-c}{-1}=\frac{c-a}{2}\)

\(\Rightarrow\left(\frac{a-b}{-1}\right)\left(\frac{b-c}{-1}\right)=\left(\frac{c-a}{2}\right)^2\)

hay \(\left(a-b\right)\left(b-c\right)=\frac{\left(c-a\right)^2}{4}\)

\(\Rightarrow4\left(a-b\right)\left(b-c\right)=\left(c-a\right)^2\)

l҉o҉n҉g҉ d҉z҉
27 tháng 8 2020 lúc 20:30

Đặt \(\frac{a}{2012}=\frac{b}{2013}=\frac{c}{2014}=k\Rightarrow\hept{\begin{cases}a=2012k\\b=2013k\\c=2014k\end{cases}}\)

A = 4( a - b )( b - c ) - ( c - a )2

= 4( 2012k - 2013k )( 2013k - 2014k ) - ( 2014k - 2012k )2

= 4.( -k ).( -k ) - ( 2k )2

= 4k2 - 4k2 = 0

Khách vãng lai đã xóa
pham hong hue
Xem chi tiết
Akai Haruma
14 tháng 7 2024 lúc 1:21

Lời giải:

Đặt $\frac{a}{2012}=\frac{b}{2013}=\frac{c}{2014}=k$

$\Rightarrow a=2012k; b=2013k; c=2014k$. Khi đó:

$A=4(a-b)(b-c)(c-a)=4(2012k-2013k)(2013k-2014k)(2014k-2012k)$

$=4(-k)(-k)(2k)=8k^3$