8x^3-16x^2y+8xy^2
2) 3x^2+6xy+3y^2-3z^2
3)x^3+x^2y-9x-9y
4) x^2-y^2+3x+3y
5) 5a^2+5b^2-5c^2+10ab
Phân tích đa thức thành nhân tử
a. 3x^2 - 6x + 9x^2 + x^3
b. 10x( x-y ) - 6y( y-x )
c. 3x^2 + 5y - 3xy - 5x
d. 3y^2 - 3z^2 + 6xy
e. 27 + 27x + 9x^2
f. 8x^3 - 12x^2y + 6xy^2 - y^3
g. X^3 + 8y^3
h. 16x^3 + 54y^3
i. x^2 - 25 - 2xy + y^2
k. x^5 - 3x^4 + 3x^3 - x^2
\(10x\left(x-y\right)-6y\left(y-x\right)\)
\(=10x\left(x-y\right)+6x\left(x-y\right)\)
\(=\left(10x+6x\right)\left(x-y\right)\)
\(c,3x^2+5y-3xy-5x\)
\(=\left(3x^2-3xy\right)+\left(5y-5x\right)\)
\(=3x\left(x-y\right)-5\left(x-y\right)\)
\(=\left(3x-5\right)\left(x-y\right)\)
\(e,27+27x+9x^2=3\left(9+9x+x^2\right)\)
\(f,8x^3-12x^2y+6xy^2-y^3\)
\(=\left(2x-y\right)^3\)
\(g,x^3+8y^3=x^3+\left(2y\right)^3\)
\(=\left(x+2y\right)\left(x^2-2xy+4x^2\right)\)
\(i,x^2-25-2xy+y^2\)
\(\left(x^2-2xy+y^2\right)-25=\left(x-y\right)^2-5^2\)
\(=\left(x-y-5\right)\left(x-y+5\right)\)
Bài 1: Thực hiện các phép tính sau:
a)-2xy^2(x^3y-2x^2y^2+5xy^3)
b)(-2x)(x^3-3x^2-x+1)
c)(-10x^3+2/5y-1/3z)(-1/2zy)
d)3x^2(2x^3-x+5)
e)(4xy+3y-5x)x^2y
f)(3x^2y-6xy+9x)(-4/3xy)
\(a,-2xy^2\left(x^3y-2x^2y^2+5xy^3\right)\\ =-2x^4y^3+4x^3y^4-10x^2y^5\\ b,\left(-2x\right)\left(x^3-3x^2-x+1\right)\\ =-2x^4+6x^3+2x^2-2x\\ c,\left(-10x^3+\dfrac{2}{5}y-\dfrac{1}{3}z\right)\left(-\dfrac{1}{2}zy\right)\\ =5x^3yz-\dfrac{1}{5}y^2z+\dfrac{1}{6}yz^2\\ d,3x^2\left(2x^3-x+5\right)=6x^5-3x^3+15x^2\\ e,\left(4xy+3y-5x\right)x^2y=4x^3y^2+3x^2y^2-5x^3y\\ f,\left(3x^2y-6xy+9x\right)\left(-\dfrac{4}{3}xy\right)\\ =-4x^3y^2+8x^2y^2-12x^2y\)
Phân tích các đa thức sau thành nhân tử:
a,(x+y)^2-9x^2
b,x^2+4-y^2+4x
c,x^2-3x+xy-3y
d,14x^2y-21xy^2+28x^2y^2
e,8x^3-1/8
f,10x(x-y)-8y(y-x)
g,x^2+6x+9
h,3x^2-3xy-5x+5y
i,3x^2+6xy+3y^2-3z^2
^ là mũ nhá mọi người
a)
(x+y)^2-9x^2 = (x+y-9x)(x+y+9x)=(y-8x)(10x+y)
b,x^2+4-y^2+4x=(x2-y2)+(4+4x)=(x-y)(x+y)+4(1+x)
Phân tích mỗi đa thức sau thành nhân tử
a)x^3-2x^2y+xy^2+xy
b)x^3+4x^2y+4xy^2-9x
c)x^3-y^3+x-y
d)4x^2-4xy+2x-y+y^2
e)9x^2-3x+2y-4y^2
f)3x^2-6xy+3y^2-5x+5y
a) Xem lại đề
b) x³ - 4x²y + 4xy² - 9x
= x(x² - 4xy + 4y² - 9)
= x[(x² - 4xy + 4y² - 3²]
= x[(x - 2y)² - 3²]
= x(x - 2y - 3)(x - 2y + 3)
c) x³ - y³ + x - y
= (x³ - y³) + (x - y)
= (x - y)(x² + xy + y²) + (x - y)
= (x - y)(x² + xy + y² + 1)
d) 4x² - 4xy + 2x - y + y²
= (4x² - 4xy + y²) + (2x - y)
= (2x - y)² + (2x - y)
= (2x - y)(2x - y + 1)
e) 9x² - 3x + 2y - 4y²
= (9x² - 4y²) - (3x - 2y)
= (3x - 2y)(3x + 2y) - (3x - 2y)
= (3x - 2y)(3x + 2y - 1)
f) 3x² - 6xy + 3y² - 5x + 5y
= (3x² - 6xy + 3y²) - (5x - 5y)
= 3(x² - 2xy + y²) - 5(x - y)
= 3(x - y)² - 5(x - y)
= (x - y)[(3(x - y) - 5]
= (x - y)(3x - 3y - 5)
\(\hept{\begin{cases}x^4+6x^2y+3xy^2+2xy+y^4+4y^2=x^3+6x^2y^2+4x^2+x+2y^2+4y\\4x^3y+6xy^2+4x+y^3+y^2+13=2x^3+3x^2y+x^2+4xy^3+8xy+y\end{cases}}\)
1) 8x^3 + 12x^2y + 6xy^2 + y^3
2) 3x^2 - 3xy - 5x + 5y
3) 3x^2 + 6xy + 3y^2 - 3z^2
giúp mình vs
a,(3+1)(x-1)
b,5x(3x-2)
c,3x^2y+6xy^2-9xy):3xy
d,(3x^4-6x^3+4x^2):2x^y
e,(8x^4y^3-4x^3y^2+x^2y^2):2x^2y^2
Bài 1:Tính:
a) (2x-y)+(2x-y)+(2x-y)+3y
b) (x+2y)+(x-2y)+(8x-3y)
c) (x+2y)-2(x-2y)-(2x-3y)
Bài 2: Cho 2 đa thức P= 9x²-6xy+3y² và Q= -3x²+7xy-2y²
Tìm đa thức M biết M+2(x²-4y²)+Q=6x²-4xy+5y²+P
Bài 1:
a) (2x - y) + (2x - y) + (2x - y) + 3y
= 3(2x - y) + 3y
= 3(2x - y + 3y)
= 3(2x + 2y)
= 3.2(x + y)
= 6(x + y)
b) (x + 2y) + (x - 2y) + (8x - 3y)
= x + 2y + x - 2y + 8x - 3y
= 9x - 3y
= 3(3x - y)
c) (x + 2y) - 2(x - 2y) - (2x - 3y)
= x + 2y - 2x + 4y - 2x + 3y
= 9y - 3x
= 3(3y - x)
Bài 2:
M + 2(x2 - 4y2) + Q = 6x2 - 4xy + 5y2 + P
M + 2x2 - 8y2 -3x2 + 7xy - 2y2 = 6x2 - 4xy + 5y2 + 9x2 - 6xy + 3y2
M + 2x2 - 3x2 - 6x2 - 9x2 - 8y2 - 2y2 - 5y2 - 3y2 + 7xy + 4xy + 6xy = 0
M - 16x2 - 18y2 + 17xy = 0
M = 16x2 + 18y2 - 17xy
Tính:
a) \(x + 2y + \left( {x - y} \right)\)
b) \(2x - y - \left( {3x - 5y} \right)\)
c) \(3{x^2} - 4{y^2} + 6xy + 7 + \left( { - {x^2} + {y^2} - 8xy + 9x + 1} \right)\)
d) \(4{x^2}y - 2x{y^2} + 8 - \left( {3{x^2}y + 9x{y^2} - 12xy + 6} \right)\)
a) \(x+2y+\left(x-y\right)\)
\(=x+2y+x-y\)
\(=2x+y\)
b) \(2x+y-\left(3x-5y\right)\)
\(=2x+y-3x+5y\)
\(=-x+6y\)
c) \(3x^2-4y^2+6xy+7+\left(-x^2+y^2-8xy+9x+1\right)\)
\(=3x^2-4y^2+6xy+7-x^2+y^2-8xy+9x+1\)
\(=2x^2-3y^2-2xy+9x+8\)
d) \(4x^2y-2xy^2+8-\left(3x^2y+9xy^2-12xy+6\right)\)
\(=4x^2y-2xy^2+8-3x^2y-9xy^2+12xy-6\)
\(=x^2y-11xy^2+2+12xy\)