Tìm GTLN của biểu thức
\(A=5-\sqrt{x^2-6x+14}\)
GTLN của biểu thức
5-\(\sqrt{x^2-6x+14}\)
\(5-\sqrt{x^2-6x+14}=5-\sqrt{x^2-6x+9+5}\)
\(=5-\sqrt{\left(x-3\right)^2+5}\le5-\sqrt{5}\)
\(Max=5-\sqrt{5}\Leftrightarrow x=3\)
ta có : \(\sqrt{x^2-6x+14}=\sqrt{\left(x-3\right)^2+5}\) ≥ \(\sqrt{5}\) ( vì \(\left(x-3\right)^2\) ≥ 0 với mọi x )
=> \(-\sqrt{x^2-6x+14}\) ≤ \(-\sqrt{5}\)
=> \(5-\sqrt{x^2-6x+14}\) ≤ \(5-\sqrt{5}\)
vậy GTLN = \(5-\sqrt{5}\) ; đạt được khi \(x-3\) = 0
<=> x = 3
*mik hongg bt đúng hongg nx :>*
1. Cho số nguyên dương x.
a, Tìm GTNN của biểu thức \(P=\sqrt[3]{10^x-2}+\sqrt{x^x+3}+\sqrt{\left(\pi^2+1\right)^{x-1}+3}\).
b, Tìm GTLN của biểu thức \(Q=\sqrt[5]{\left(6x^2+5\right)^{1-x}}+\sqrt[3]{3-2x^2}\).
c, Chứng minh rằng: \(\dfrac{\left(x+1\right)^6}{\left(x^3+7\right)\left(x^3+3x^2+4\right)}\ge1\).
2. Cho tam giác OEF vuông tại O có OE = a, OF = b, EF = c thỏa mãn điều kiện a, b, c là các số dương. Chứng minh rằng biểu thức \(A=\dfrac{a+b}{c}+\dfrac{c}{a+b}\) không nhận bất kì giá trị nguyên dương nào.
Tìm GTNN hoặc GTLN (nếu có) của:
a) A = \(\sqrt{x^2-2x+5}\)
b) B = 5 - \(\sqrt{x^2-6x+14}\)
a) \(A=\sqrt[]{x^2-2x+5}\)
\(\Leftrightarrow A=\sqrt[]{x^2-2x+1+4}\)
\(\Leftrightarrow A=\sqrt[]{\left(x+1\right)^2+4}\)
mà \(\left(x+1\right)^2\ge0,\forall x\in R\)
\(A=\sqrt[]{\left(x+1\right)^2+4}\ge\sqrt[]{4}=2\)
Dấu "=" xảy ra khi và chỉ khi \(x+1=0\Leftrightarrow x=-1\)
Vậy \(GTNN\left(A\right)=2\left(khi.x=-1\right)\)
b) \(B=5-\sqrt[]{x^2-6x+14}\)
\(\Leftrightarrow B=5-\sqrt[]{x^2-6x+9+5}\)
\(\Leftrightarrow B=5-\sqrt[]{\left(x-3\right)^2+5}\left(1\right)\)
Ta có : \(\left(x-3\right)^2\ge0,\forall x\in R\)
\(\Leftrightarrow\left(x-3\right)^2+5\ge5,\forall x\in R\)
\(\Leftrightarrow\sqrt[]{\left(x-3\right)^2+5}\ge\sqrt[]{5},\forall x\in R\)
\(\Leftrightarrow-\sqrt[]{\left(x-3\right)^2+5}\le-\sqrt[]{5},\forall x\in R\)
\(\Leftrightarrow B=5-\sqrt[]{\left(x-3\right)^2+5}\le5-\sqrt[]{5},\forall x\in R\)
Dấu "=" xả ra khi và chỉ khi \(x-3=0\Leftrightarrow x=3\)
Vậy \(GTLN\left(B\right)=5-\sqrt[]{5}\left(khi.x=3\right)\)
Tìm GTLN của biểu thức :
\(P=\left|\sqrt{x^2-4x+5}-\sqrt{x^2+6x+13}\right|\)
Không chắc lắm nha! Phần BĐT phụ mình có đc là nhờ sách nâng cao nên ms làm đc thôi!
Ta c/m BĐT phụ: \(\left|\sqrt{f^2+g^2}-\sqrt{h^2+k^2}\right|\le\sqrt{\left(f-h\right)^2+\left(g-k\right)^2}\) với f - h;g-k là hằng số. (1)
Bình phương hai vế,ta có: \(BĐT\Leftrightarrow f^2+g^2+h^2+k^2-2\sqrt{\left(f^2+g^2\right)\left(h^2+k^2\right)}\le f^2+h^2-2fh+g^2+k^2-2gk\)
\(\Leftrightarrow fh+gh\le\sqrt{\left(f^2+g^2\right)\left(h^2+k^2\right)}\) (2)
Nếu fh + gh < 0 thì (2) đúng
Nếu fh + gh >= 0 thì \(\left(2\right)\Leftrightarrow f^2h^2+g^2k^2+2fhgi\le f^2h^2+f^2k^2+g^2h^2+g^2k^2\)
\(\Leftrightarrow\left(fk-gh\right)^2\ge0\)(đúng)
Dấu "=" xảy ra fk = gh và fh + gk >= 0 (trích chứng minh BĐT ở sách 9 chuyên đề đại số THCS_ Vũ Hữu Bình)
Quay lại bài toán,ta có: \(P=\left|\sqrt{\left(x-2\right)^2+1^2}-\sqrt{\left(x+3\right)^2+2^2}\right|\)
\(\le\sqrt{\left(-5\right)^2+\left(1-2\right)^2}=\sqrt{25+1}=\sqrt{26}\)
Dấu "=" xảy ra khi 2(x-2) = 1(x+3) và (x-2)(x+3) + 1(x+3) >=0
Tức là x = 7 (t/m)
* Tìm GTNN của \(\sqrt{x^2-2x+5}\)
* Tìm GTLN của \(5-\sqrt{x^2-6x+14}\)
\(x^2-2x+5=x^2-2x+1+4=\left(x-1\right)^2+4\ge4\)
\(\sqrt{\left(x-1\right)^2+4}\ge2\)
\(\sqrt{x^2-2x+5}\ge2\)
tìm GTLN của biểu thức \(7-\sqrt{x^2-6x+9}\)
Ta có :
\(\sqrt{x^2-6x+9}=\sqrt{\left(x-3\right)^2}\)
Đến đây bạn làm như thường là đưcọ rồi
Chúc bạn học tốt
\(=7-\sqrt{\left(x-3\right)^2}\le7\)
GTLN là 7
Đặt \(A=7-\sqrt{x^2-6x+9}\)
Do \(\sqrt{x^2-6x+9}\ge0\)
\(\Rightarrow7-\sqrt{x^2-6x+9}\le7\)
\(\Leftrightarrow A\le7\)
Dấu "=" xảy ra khi : \(x^2-6x+9=0\)
\(\Leftrightarrow\left(x-3\right)^2=0\)
\(\Leftrightarrow x=3\)
Vậy \(A_{Max}=7\Leftrightarrow x=3\)
Tìm GTLN của biểu thức
a) M=-x^2-6x+14
b) N= 9x^2+12x+20
c) P= -x^2 - 4y^2 +4x-4y+3
a) \(M=-\left(x^2+6x+9\right)+23=23-\left(x-3\right)^2\le23\Rightarrow MaxM=23\Leftrightarrow x=3\)
b) \(N=\left(9x^2+12x+4\right)+16=\left(3x+2\right)^2+16\ge16\Leftrightarrow MinN=16\Leftrightarrow x=-\frac{2}{3}\)
c) \(P=-\left(x^2-4x+4\right)-\left(4y^2+4y+1\right)+8=8-\left(x-2\right)^2-\left(2y+1\right)^2\le8\Rightarrow MaxP=8\Leftrightarrow x=2;y=-\frac{1}{2}\)
câu b k tìm đc GTLN chỉ tìm được GTNN thôi nha
câu b mình ghi đề sai,phải là N=-9x^2+12x+20 nha bạn
\(N=-9x^2+12x+20\)
\(=-\left[\left(3x\right)^2-2.3x.2+4+16\right]\)
\(=-\left[\left(3x-2\right)^2+16\right]\)
\(=-\left(3x-2\right)^2-16\le-16\)
Vậy \(N_{max}=-16\Leftrightarrow3x-2=0\Leftrightarrow x=\frac{2}{3}\)
Tìm GTNN của biểu thức A= x^2-6x+10; B= 3x^2-12x+1; Tìm GTLN của biểu thức C= -x^2+2x+5; D= 4x-x^2; E = x.(x-3)(x-4)(x-7)
\(A=x^2-6x+10\)
\(\Leftrightarrow A=x^2-2\cdot x\cdot3+3^2-9+10\)
\(\Leftrightarrow A=\left(x-3\right)^2+1\ge1\) \(\forall x\in z\)
\(\Leftrightarrow A_{min}=1khix=3\)
\(B=3x^2-12x+1\)
\(\Leftrightarrow B=\left(\sqrt{3}x\right)^2-2\cdot\sqrt{3}x\cdot2\sqrt{3}+\left(2\sqrt{3}\right)^2-12+1\)
\(\Leftrightarrow B=\left(\sqrt{3}x-2\sqrt{3}\right)^2-11\ge-11\) \(\forall x\in z\)
\(\Leftrightarrow B_{min}=-11khix=2\)
a) Tìm GTLN của biểu thức: 6x-x^2-11
b) Tìm GTNN của biểu thức: x^2-5x-2a) \(A=6x-x^2-11=-\left(x^2-6x+9\right)-2=-\left(x-3\right)^2-2\le-2\)
Dấu \(=\)khi \(x-3=0\Leftrightarrow x=3\).
b) \(B=x^2-5x-2=x^2-2.\frac{5}{2}x+\left(\frac{5}{2}\right)^2-\frac{33}{4}=\left(x-\frac{5}{2}\right)^2-\frac{33}{4}\ge-\frac{33}{44}\)
Dấu \(=\)khi \(x-\frac{5}{2}=0\Leftrightarrow x=\frac{5}{2}\).