Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
21 tháng 12 2019 lúc 7:02

a, Ta có:

2 + 2 2 + 2 3 + 2 4 + . . . + 2 99 + 2 100

=  2 + 2 2 + 2 3 + 2 4 + 2 5 +...+ 2 96 + 2 97 + 2 98 + 2 99 + 2 100

= 2. 1 + 2 + 2 2 + 2 3 + 2 4 +...+ 2 96 1 + 2 + 2 2 + 2 3 + 2 4

=  2 . 31 + 2 6 . 31 + . . . + 2 96 . 31

=  2 + 2 6 + . . . + 2 96 . 31  chia hết cho 31

b, Ta có:

5 + 5 2 + 5 3 + 5 4 + 5 5 + 5 6 + . . . + 5 149 + 5 150

=  5 + 5 2 + 5 3 + 5 4 + 5 5 + 5 6 + . . . + 5 149 + 5 150

5 1 + 5 + 5 3 1 + 5 + 5 5 1 + 5 + . . . + 5 149 1 + 5

=  5 . 6 + 5 3 . 6 + 5 5 . 6 + . . . + 5 149 . 6

=  ( 5 + 5 3 + 5 5 + . . . + 5 149 ) . 6  chia hết cho 6

Ta lại có:

5 + 5 2 + 5 3 + 5 4 + 5 5 + 5 6 + . . . + 5 149 + 5 150

=  5 + 5 2 + 5 3 + 5 4 + 5 5 + 5 6 +...+ 5 145 + 5 146 + 5 147 + 5 148 + 5 149 + 5 150  (có đúng 25 nhóm)

[ ( 5 + 5 4 ) + ( 5 2 + 5 5 ) + ( 5 3 + 5 6 ) ] + ... +  [ 5 145 + 5 148 ) + ( 5 146 + 5 149 ) + ( 5 147 + 5 150 ]

=  [ 5 ( 1 + 5 3 ) + 5 2 ( 1 + 5 3 ) + 5 3 ( 1 + 5 3 ) ] + ... +  [ 5 145 1 + 5 3 ) + 5 146 ( 1 + 5 3 ) + 5 147 ( 1 + 5 3 ]

=  ( 5 . 126 + 5 2 . 126 + 5 3 . 126 ) + ... +  ( 5 145 . 126 + 5 146 . 126 + 5 147 . 126 )

=  ( 5 + 5 2 + 5 3 ) . 126 +  ( 5 7 + 5 8 + 5 9 ) . 126 +  ... + ( 5 145 + 5 146 + 5 147 ) . 126

= 126.[ ( 5 + 5 2 + 5 3 ) + ( 5 7 + 5 8 + 5 9 ) + ... +  ( 5 145 + 5 146 + 5 147 ) ] chia hết cho 126.

Vậy  5 + 5 2 + 5 3 + 5 4 + 5 5 + 5 6 + . . . + 5 149 + 5 150  vừa chia hết cho 6, vừa chia hết cho 126

 

Xuân
6 tháng 11 2023 lúc 19:15

Chịu 🤭🤭🤭

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
17 tháng 10 2019 lúc 4:27

Ngô Minh Khuê
Xem chi tiết
Nguyễn Hoàng Minh
21 tháng 12 2021 lúc 22:36

\(A=\left(2+2^2\right)+\left(2^3+2^4\right)+...+\left(2^{99}+2^{100}\right)\\ A=\left(2+2^2\right)+2^2\left(2+2^2\right)+...+2^{98}\left(2+2^2\right)\\ A=\left(2+2^2\right)\left(1+2^2+...+2^{98}\right)\\ A=6\left(1+2^2+...+2^{98}\right)⋮6\)

lê anh kiệt
Xem chi tiết
Nguyễn Lê Phước Thịnh
28 tháng 10 2023 lúc 21:05

\(A=2+2^2+2^3+2^4+...+2^{99}+2^{100}\)

\(=\left(2+2^2\right)+2^2\left(2+2^2\right)+...+2^{98}\left(2+2^2\right)\)

\(=6\left(1+2^2+...+2^{98}\right)⋮6\)

Chi Khánh
Xem chi tiết
H.anhhh(bep102) nhận tb...
8 tháng 8 2021 lúc 13:52

*Sửa lại đề*

A = 21+ 22+ 23+ 24 + .. + 2100

A = (21+22) + (23+ 24) +...+ (299+ 2100)

A = 2.(1+2) + 23.(1+2) + .. + 299. (1+2)

A = 2.3 + 23. 3 + .. + 299.3

A = 3 . (21 + 23 + .... + 299)

Mà 3 chia hết cho 3 

=> A chia hết cho 3

Khách vãng lai đã xóa
Funky
Xem chi tiết
Nguyễn Lê Phước Thịnh
7 tháng 1 2021 lúc 12:47

Ta có: \(A=2+2^2+2^3+2^4+...+2^{99}+91\)

\(=\left(2+2^2+2^3\right)+\left(2^4+2^5+2^6\right)+...+\left(2^{97}+2^{98}+2^{99}\right)+91\)

\(=2\cdot\left(1+2+2^2\right)+2^4\left(1+2+2^2\right)+...+2^{97}\left(1+2+2^2\right)+91\)

\(=7\cdot\left(1+2^4+...+2^{97}\right)+7\cdot13\)

\(=7\cdot\left(1+2^4+...+2^{97}+13\right)⋮7\)(đpcm)

phạm thành đạt
Xem chi tiết
Nguyễn Lê Phước Thịnh
7 tháng 1 2021 lúc 12:44

Ta có: \(A=2+2^2+2^3+2^4+...+2^{99}\)

\(=\left(2+2^2+2^3\right)+\left(2^4+2^5+2^6\right)+...+\left(2^{97}+2^{98}+2^{99}\right)\)

\(=2\cdot\left(1+2+2^2\right)+2^4\cdot\left(1+2+2^2\right)+...+2^{97}\left(1+2+2^2\right)\)

\(=\left(1+2+2^2\right)\cdot\left(2+2^4+...+2^{97}\right)\)

\(=7\cdot\left(2+2^4+...+2^{97}\right)⋮7\)(đpcm)

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
19 tháng 4 2018 lúc 12:16

Ta có

  2 1 + 2 2 + 2 3 + 2 4 + 2 5 + 2 6 + 2 7 +...+ 2 98 + 2 99 + 2 100

= 2 1 + ( 2 2 + 2 3 + 2 4 ) + ( 2 5 + 2 6 + 2 7 ) +...+ ( 2 98 + 2 99 + 2 100 )

= 2 + 2 2 1 + 2 + 2 2 + 2 5 1 + 2 + 2 2 + . . . + 2 98 1 + 2 + 2 2

= 2 + 2 2 . 7 + 2 5 . 7 + . . . + 2 98 . 7 = 2 + 7 2 2 + 2 5 + . . . + 2 98

Mà  7 . 2 2 + 2 5 + . . . + 2 98 ⋮ 7  

Nên  2 + 7 2 2 + 2 5 + . . . + 2 98 : 7   d ư   2

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
17 tháng 10 2019 lúc 8:44

Đề kiểm tra Toán 6 | Đề thi Toán 6

secret1234567
Xem chi tiết
Lấp La Lấp Lánh
18 tháng 10 2021 lúc 20:21

\(A=\left(2+2^2\right)+2^2\left(2+2^2\right)+...+2^{98}\left(2+2^2\right)\)

\(=6+2^2.6+...+2^{98}.6\)

\(=6\left(1+2^2+...+2^{98}\right)⋮6\)

Minh Hiếu
18 tháng 10 2021 lúc 20:23

\(A=2+2^2+2^3+2^4+...+2^{99}+2^{100}\)

\(=\left(2+2^2\right)+2^2\left(2+2\right)+...+2^{98}\left(2+2^2\right)\)

\(=\left(2+2^2\right)\left(1+2^2+...+2^{98}\right)\)

\(=6\left(1+2^2+...+2^{98}\right)\)⋮6

⇒ A⋮6