cho tỉ lệ thức a/b=c/d a,b,c,d khác 0 cm
1) a+b/b=c+d/d
2) 5a+3b/5a-3b=5c+3d/5c-3d
cho tỉ lệ thức a/b= c/d (a,b,c,d khác 0)
cm 1) a+b/b=c+d/d 2) 5a+3b/5a-3b=5c+3d/5c-3d
Đặt \(\frac{a}{b}=\frac{c}{d}=k\)
Suy ra \(\begin{cases}a=bk\\c=dk\end{cases}\Rightarrow\frac{a+b}{b}=\frac{c+d}{d}\Leftrightarrow\frac{bk+b}{b}=\frac{dk+d}{d}\)
Xét VT \(\frac{bk+b}{b}=\frac{b\left(k+1\right)}{b}=k+1\left(1\right)\)
Xét VP \(\frac{dk+d}{d}=\frac{d\left(k+1\right)}{d}=k+1\left(2\right)\)
Từ (1) và (2) -->Đpcm
b)Đặt tương tự ta có:
\(\frac{5a+3b}{5a-3b}=\frac{5c+3d}{5c-3d}\Leftrightarrow\frac{5bk+3b}{5bk-3b}=\frac{5dk+3d}{5dk-3d}\)
Xét VT \(\frac{5bk+3b}{5bk-3b}=\frac{b\left(5k+3\right)}{b\left(5k-3\right)}=\frac{5k+3}{5k-2}\left(1\right)\)
Xét VP \(\frac{5dk+3d}{5dk-3d}=\frac{d\left(5k+3\right)}{d\left(5k-3\right)}=\frac{5k+3}{5k-3}\left(2\right)\)
Từ (1) và (2) -->Đpcm
Bạn xem lại đề nhé :)
1) Ta có : \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{b}+1=\frac{c}{d}+1\Rightarrow\frac{a+b}{b}=\frac{c+d}{d}\)
2) \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{5}{3}.\frac{a}{b}=\frac{5}{3}.\frac{c}{d}\Rightarrow\frac{5a}{3b}-1=\frac{5c}{3d}-1\Rightarrow\frac{5a-3b}{3b}=\frac{5c-3d}{3d}\)
\(\Rightarrow\frac{3b}{5a-3b}=\frac{3d}{5c-3d}\Rightarrow\frac{6b}{5a-3b}=\frac{6d}{5c-3d}\Rightarrow\frac{6b}{5a-3b}+1=\frac{6d}{5c-3d}+1\)
\(\Rightarrow\frac{5a+3b}{5a-3b}=\frac{5c+3d}{5c-3d}\)
Cho tỉ lệ thức: \(\dfrac{a}{b}=\dfrac{c}{d}\left(a,b,c,d\ne0\right)\)
Chứng minh:
1) \(\dfrac{a+b}{b}=\dfrac{c+d}{d}\)
2) \(\dfrac{5a+3b}{5a-3b}=\dfrac{5c+3d}{5c-3d}\)
a) \(\dfrac{a}{b}=\dfrac{c}{d}\left(a;b;c;d\ne0\right)\)
\(\Rightarrow\dfrac{a}{c}=\dfrac{b}{d}=\dfrac{a+b}{c+d}\)
\(\Rightarrow\dfrac{a+b}{b}=\dfrac{c+d}{d}\)
\(\Rightarrow dpcm\)
b) \(\dfrac{a}{b}=\dfrac{c}{d}\)
\(\Rightarrow\dfrac{a}{c}=\dfrac{b}{d}\)
\(\Rightarrow\dfrac{5a}{5c}=\dfrac{3b}{3d}=\dfrac{5a+3b}{5c+3d}=\dfrac{5a-3b}{5c-3d}\)
\(\Rightarrow\dfrac{5a+3b}{5a-3b}=\dfrac{5c+3d}{5c-3d}\)
\(\Rightarrow dpcm\)
Lời giải:
Đặt $\frac{a}{b}=\frac{c}{d}=k$
$\Rightarrow a=bk; c=dk$. Khi đó:
1.
$\frac{a+b}{b}=\frac{bk+b}{b}=\frac{b(k+1)}{b}=k+1(1)$
$\frac{c+d}{d}=\frac{dk+d}{d}=\frac{d(k+1)}{d}=k+1(2)$
Từ $(1); (2)\Rightarrow \frac{a+b}{b}=\frac{c+d}{d}$
2.
$\frac{5a+3b}{5a-3b}=\frac{5bk+3b}{5bk-3b}=\frac{b(5k+3)}{b(5k-3)}=\frac{5k+3}{5k-3}(3)$
$\frac{5c+3d}{5c-3d}=\frac{5dk+3d}{5dk-3d}=\frac{d(5k+3)}{d(5k-3)}=\frac{5k+3}{5k-3}(4)$
Từ $(3); (4)\Rightarrow \frac{5a+3b}{5a-3b}=\frac{5c+3d}{5c-3d}$ (đpcm)
a) Cho tỉ leek thức a^2 +b^2 /c^2 +d^2 =ab/cd
chứng minh a/b=c/d ( ac-bd #0)
b) Cho tỉ lệ thức a/b =c/d
CMR : 5a+3b/5a-3b = 5c+3d/5c-3d
CHO TỈ LỆ THỨC a/b=c/d . chứng minh 5a+3b/5a-3b=5c+3d/5c-3d
\(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}=\frac{5a}{5c}=\frac{3b}{3d}=\frac{5a+3b}{5c+3d}=\frac{5a-3b}{5c-3d}\)suy ra đpcm.
Cho a/b =c/d CM: a) 5a+3b/5c+3d=5a-3b/5c-3d. b) a^2+b^2/c^2+d^2=(a+b/c+d)^2
Vt lại đề nhé (khó nhìn)
Cho \(\dfrac{a}{b}=\dfrac{c}{d}\)
Chứng minh : \(\dfrac{5a+3b}{5c+3d}=\dfrac{5a-3b}{5c-3d}\)
Đặt \(\dfrac{a}{b}=\dfrac{c}{d}=x\Rightarrow a=bx;c=dx\)
Lần lượt thay vào các vế, ta được :
\(\dfrac{5a+3b}{5a-3b}=\dfrac{5.b.x+3b}{5.b.x+3b}=\dfrac{b\left(5x+3\right)}{b\left(5x+3\right)}=\dfrac{5x+3}{5x+3}\left(1\right)\)
\(\dfrac{5c-3d}{5c-3d}=\dfrac{5.d.x-3d}{5.d.x-3d}=\dfrac{d\left(5x-3\right)}{d\left(5x-3\right)}=\dfrac{5x-3}{5x-3}\left(2\right)\)
Từ \(\left(1\right)và\left(2\right)\)
\(\Rightarrow\dfrac{5a+3b}{5c+3d}=\dfrac{5a-3b}{5c-3d}\left(đpcm\right)\)
cho a/b =c/d ( a,b,c,dkhác 0)
CMR :
a) a-b/a+b=c-d/c+d
b) 5a+3b/5a-3b=5c+3d/5c-3d
(a -b)/(a +b) bạn chia cả tử và mẫu cho b bạn sẽ có(a/b - 1)/(a/b +1) = (c/d -1)/(c/d + 1). bạn nhân cả tử và mẫu cho d bạn sẽ có (c - d)/(c +d) điều phải cm
câu b bạn làm tương tự, dễ mà
Cho a/b = c/d khác 1(a,b,c,d khác 0)
CMR: a, a-b/a=c-d/c
b,5a+3b/5a-3b=5c+3d/5c-3d
c,a^2+b^2/c^2+d^2=a.d/c.d
a. Ta có : \(\frac{a}{b}=\frac{c}{d}\Rightarrow ad=bc\)
\(\Rightarrow ac-ad=ac-bc\)
\(\Rightarrow a.\left(c-d\right)=c.\left(a-b\right)\)
\(\Rightarrow\frac{a-b}{a}=\frac{c-d}{c}\)
Câu b,c tương tự
Bạn giải giúp mình luôn phần c đc ko
Cho tỉ lệ thức:\(\frac{a}{b}=\frac{c}{d}\left(a;b;c;d\ne0\right)\)
Chứng minh:
a) \(\frac{a+b}{b}=\frac{c+d}{d}\)
b) \(\frac{5a+3b}{5a-3b}=\frac{5c+3d}{5c-3d}\)
-,-'' theo trí nhớ của miu thì nok là thế nì....
a) Cho tỉ lệ thức: \(\frac{a}{b}=\frac{c}{d}\left(a;b;c;d\ne0\right)\)
\(CM:\frac{a+b}{b}=\frac{c+d}{d}\)
\(\frac{a+b}{b}=\frac{c+d}{d}\Leftrightarrow\frac{a}{b}+\frac{b}{b}=\frac{c}{d}+\frac{d}{d}\Leftrightarrow\frac{a}{b}+1=\frac{c}{d}+1\)
\(\Leftrightarrow\)\(\frac{a}{b}=\frac{c}{d}\)hay theo đề bài: \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a+b}{b}=\frac{c+d}{d}\)
^^ làm đại khái :V ko cần suy nghĩ... chỉ là mò về kiến thức cũ (nếu có sai mong thánh thông cảm!! :P)
caj câu b bao h nghĩ xong cách làm thì mk đăng (h fai gô-tu-bét r`)
bài 7,4* SBT 1 là 1 dạng tương tự.... (giải giống nok là đc)
Đặt \(\frac{a}{b}=\frac{c}{d}=m\Leftrightarrow a=b.m,c=d.m\)
gọi \(\frac{5a+3b}{5a-3b}\)(vế 1) \(\frac{5c+3d}{5c-3d}\)(vế 2)
Thay m vào vế 1 và 2 ta có:
\(\frac{5a+3b}{5a-3b}=\frac{5bm+3b}{5bm-3b}=\frac{b\left(5m+3\right)}{b\left(5m-3\right)}=\frac{5m+3}{5m-3}\)(1)
\(\frac{5c+3d}{5c-3d}=\frac{5dm+3d}{5dm+3d}=\frac{d\left(5m+3\right)}{d\left(5m-3\right)}=\frac{5m+3}{5m-3}\)(2)
Từ (1) và (2) => \(\frac{5a+3b}{5a-3b}=\frac{5c+3d}{5c-3d}\left(đpcm\right)\)
bài nì ko pai chỉ có 1 cách (c`n nhìu cách nữa) tham khảo thêm trg sách or SBT... mí SNC
cho a/b=c/d. CMR:5a+3b/5c=3d=3d=5a-3b/5c-3d
từ a/b = c/d => a/c = b/d => 5a/5c = 3b/3d
áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{5a}{5c}=\frac{3b}{3d}=\frac{5a+3b}{5c+3d}=\frac{5a-3b}{5c-3d}\)
từ: \(\frac{5a+3b}{5c+3d}=\frac{5a-3b}{5c-3d}\)áp dụng tính chất ta dc
\(\frac{5a+3b}{5a-3b}=\frac{5c+3d}{5c-3d}\)(đcpm)