Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
ℍ𝕠̣𝕔 𝔻𝕠̂́𝕥
Xem chi tiết
Trúc Giang
1 tháng 5 2020 lúc 7:24

Bài tập 2:

a/ A + (x2 - 2xy + y2) = x2 +2xy + y2

=> A = (x2 + 2xy + y2) - (x2 - 2xy + y2)

=> A = x2 + 2xy + y2 - x2 + 2xy - y2

=> A = (x2 - x2) + (2xy + 2xy) + (y2 - y2)

=> A = 0 + (2 + 2). xy + 0

=> A = 4xy

b/ B - (x2y-3xy2 +5) = 3x2 + 1 + 4x2y

=> B = (3x2 + 1 + 4x2y) + (x2y-3xy2 +5)

=> B = 3x2 + 1 + 4x2y + x2y - 3xy2 + 5

=> B = (1 + 5) + (4x2y - x2y) + 3x2 - 3xy2

=> B = 6 + 3x2y + 3x2 - 3xy2

D - 9x + 2y3 - 7x3y2 - 4x5y + 1 = 0

=> D = 0 + 9x + 2y3 - 7x3y2 - 4x5y + 1

=> D = 9x + 2y3 - 7x3y2 - 4x5y + 1

P.s: Lần sau bạn đăng 1 câu hỏi/ bài đăng thôi nhé! Và nhớ dùng công thức trực quan!

Đỗ Hoàng Hải
Xem chi tiết
Nguyễn Huyền Trâm
22 tháng 5 2020 lúc 21:56

Bài 2: Tính giá trị của biểu thức:
a) P= 1/3 x^2 y + xy^2 - xy + 1/2 xy^2 - 5xy - 1/3 x^2 y (1)

Tại x = 0,5; y = 1

Thay \(x=0,5 ; y=1\) vào biểu thức (1) , ta có :

P= \(\dfrac{1}{3} . 0,5^2.1+0,5.1^2-0,5.1+\dfrac{1}{2}. 0,5.1^2-5.0,5.1-\dfrac{1}{3}.0,5^2.1\)

P= \(=\dfrac{1}{12}+\dfrac{1}{2} -0,5+\dfrac{1}{4} -\dfrac{5}{2} - \dfrac{1}{12}\)

P= \(= \dfrac{-9}{4}\)

Vậy \(P =\dfrac{-9}{4}\)

Đỗ Thùy Trang
Xem chi tiết
46. Nguyễn Thị Thảo Vy
Xem chi tiết
Nguyễn Lê Phước Thịnh
2 tháng 1 2023 lúc 13:49

\(=\dfrac{2x^2-5xy+x^2+xy+y^2-x^2+y^2}{\left(x-y\right)\left(x^2+xy+y^2\right)}\)

\(=\dfrac{2x^2-4xy+2y^2}{\left(x-y\right)\left(x^2+xy+y^2\right)}\)

\(=\dfrac{2\left(x-y\right)^2}{\left(x-y\right)\left(x^2+xy+y^2\right)}=\dfrac{2x-2y}{x^2+xy+y^2}\)

thuyhang tran
Xem chi tiết
Nguyễn Lê Phước Thịnh
8 tháng 9 2021 lúc 14:18

Bài 2:

a: Ta có: \(2\left(5x-8\right)-3\left(4x-5\right)=4\left(3x-4\right)+11\)

\(\Leftrightarrow10x-16-12x+15=12x-16+11\)

\(\Leftrightarrow-14x=-4\)

hay \(x=\dfrac{2}{7}\)

b: Ta có: \(2x\left(6x-2x^2\right)+3x^2\left(x-4\right)=8\)

\(\Leftrightarrow12x^2-4x^3+3x^3-12x^2=8\)

\(\Leftrightarrow x^3=-8\)

hay x=-2

Nguyễn Lê Phước Thịnh
8 tháng 9 2021 lúc 14:20

Bài 1: 

a: Ta có: \(I=x\left(y^2-xy^2\right)+y\left(x^2y-xy+x\right)\)

\(=xy^2-x^2y^2+x^2y^2-xy^2+xy\)

\(=xy\)

=1

b: Ta có: \(K=x^2\left(y^2+xy^2+1\right)-\left(x^3+x^2+1\right)\cdot y^2\)

\(=x^2y^2+x^3y^2+x^2-x^3y^2-x^2y^2-y^2\)

\(=x^2-y^2\)

\(=\dfrac{1}{4}-\dfrac{1}{4}=0\)

Phạm Bích Thảo
Xem chi tiết
Bùi Thị Nguyệt Ánh
27 tháng 2 2020 lúc 19:03

a)x.x.y.x.y.y2

=x3.y3

(số bên cạnh chữ là mũ nha bn hiền)

Khách vãng lai đã xóa
Phạm Bích Thảo
28 tháng 2 2020 lúc 16:09

bạn xem lại đề mk vs

Khách vãng lai đã xóa
Buddy
Xem chi tiết

\(\left( {3{x^2} - 5xy - 4{y^2}} \right).\left( {2{x^2} + {y^2}} \right) + \left( {2{x^4}y^2 + {x^3}{y^3} + {x^2}{y^4}} \right):\left( {\dfrac{1}{5}xy} \right)\\\)

\(= 3{x^2}.2{x^2} + 3{x^2}.{y^2} - 5xy.2{x^2} - 5xy.{y^2} - 4{y^2}.2{x^2} - 4{y^2}.{y^2} + 2{x^4}y^2:\left( {\dfrac{1}{5}xy} \right) + {x^3}{y^3}:\left( {\dfrac{1}{5}xy} \right) + {x^2}{y^4}:\left( {\dfrac{1}{5}xy} \right)\\\)

\(= 6{x^4} + 3{x^2}{y^2} - 10{x^3}y - 5x{y^3} - 8{x^2}{y^2} - 4{y^4} + 10{x^3}y + 5{x^2}{y^2} + 5x{y^3}\\\)

\(= 6{x^4} - 4{y^4}+ ( - 10{x^3}y + 10{x^3}y) + \left( { - 5x{y^3} + 5x{y^3}} \right) + \left( {3{x^2}{y^2} - 8{x^2}{y^2} + 5{x^2}{y^2}} \right)\\\)

\(= 6{x^4} - 4{y^4}\)

Quỳnh Ruby
Xem chi tiết
Lucy Cute
Xem chi tiết
Uyên trần
21 tháng 3 2021 lúc 18:54

Bài 1

a, 1/5xy^2(-5xy )= -x^2y^3

-hệ số :-1 biến :x^2y^3

b, x^3(-1/3y)1/5x^2y=-1/15x^5y^2

-Hệ số :-1/15, biến :x^5y^2

Nguyễn Lê Phước Thịnh
21 tháng 3 2021 lúc 21:24

Bài 1: 

c) Ta có: \(\dfrac{2}{a}\cdot x^2\cdot y^3\cdot z\cdot\left(-x^3yz\right)\)

\(=-\dfrac{2}{a}\cdot x^5y^4z^2\)

Hệ số là \(-\dfrac{2}{a}\)

Phần biến là: \(x^5;y^4;z^2\)