x^2+y^2+2y-6x+10=0
a) 2x2 + 2y2 - 2xy + x + y - 10 = 0
b) x4 + 2x3 - 6x2 + 2x + 1 = 0
c) x2 - 3xy + 2y2 + 6 = 0
d) x2 + 2x + y2 + 6x + 10 = 10
Tìm x,y biết:
a)x2 + y2 - 6x + 2y + 10 = 0
b)4x2 + y2 - 20x -2y + 26 = 0
a) x2 + y2 - 6x + 2y + 10 = 0
<=> ( x2 - 6x + 9 ) + ( y2 + 2y + 1 ) = 0
<=> ( x - 3 )2 + ( y + 1 )2 = 0
<=> \(\hept{\begin{cases}x-3=0\\y+1=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=3\\y=-1\end{cases}}\)
b) 4x2 + y2 - 20x - 2y + 26 = 0
<=> ( 4x2 - 20x + 25 ) + ( y2 - 2y + 1 ) = 0
<=> ( 2x - 5 )2 + ( y - 1 )2 = 0
<=> \(\hept{\begin{cases}2x-5=0\\y-1=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=\frac{5}{2}\\y=1\end{cases}}\)
a) x2 + y2 - 6x + 2y + 10 = 0
=> (x2 - 6x + 9) + (y2 + 2y + 1) = 0
=> (x - 3)2 + (y + 1)2 = 0 (1)
Vì \(\hept{\begin{cases}\left(x-3\right)^2\ge0\forall x\\\left(y+1\right)^2\ge0\forall y\end{cases}}\Rightarrow\left(x-3\right)^2+\left(y+1\right)^2\ge0\forall x;y\)
Đẳng thức (1) xảy ra <=> \(\hept{\begin{cases}x-3=0\\y+1=0\end{cases}}\Rightarrow\hept{\begin{cases}x=3\\y=-1\end{cases}}\)
Vậy x = 3 ; y = -1
b) 4x2 + y2 + 20x - 2y + 26 = 0
=> (4x2 - 20x + 25) + (y2 - 2y + 1) = 0
=> (2x - 5)2 + (y - 1)2 = 0 (1)
Vì \(\hept{\begin{cases}\left(2x-5\right)^2\ge0\forall x\\\left(y-1\right)^2\ge0\forall y\end{cases}}\Rightarrow\left(2x-5\right)^2+\left(y-1\right)^2\ge0\forall x;y\)
Đẳng thức (1) "=" xảy ra <=> \(\hept{\begin{cases}2x-5=0\\y-1=0\end{cases}}\Rightarrow\hept{\begin{cases}x=2,5\\y=1\end{cases}}\)
Vậy x = 2,5 ; y = 1
\(\text{a)}\Leftrightarrow\left(x^2-6x+9\right)+\left(y^2+2y+1\right)=0\)
\(\Leftrightarrow\left(x-3\right)^2+\left(y+1\right)^2=0\)
\(\text{Vì }\hept{\begin{cases}\left(x-3\right)^2\ge0\\\left(y+1\right)^2\ge0\end{cases}\text{nên }\left(x-3\right)^2}+\left(y+1\right)^2\ge0\)
\(\text{Dấu = xảy ra }\Leftrightarrow\hept{\begin{cases}x-3=0\\y+1=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x=3\\y=-1\end{cases}}\)
\(\text{b)}\Leftrightarrow\left(4x^2-20x+25\right)+\left(y^2-2x+1\right)=0\)
\(\Leftrightarrow\left(2x-5\right)^2+\left(y-1\right)^2=0\)
\(\text{Tương tự phần a ,}\Rightarrow\hept{\begin{cases}2x-5=0\\y-1=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x=\frac{5}{2}\\y=1\end{cases}}\)
Tìm x,y biết :
1. x^2 + y^2 + 2y - 6x + 10 = 0
2. 10- 6x +12y+9x^2 +4y^2 = 0
3. x^2 + 9y^2 + 6y+ 5+4x = 0
4. x^2 + 20 +9y^2 +8x - 12y =0
( Giup mk nha mk đang cần gấp! Thanks mọi người nhiều ! )
1.
\(x^2\)+\(y^2\)+2y-6x+10=0
=> \(x^2\)-6x+9 +\(y^2\)+2y+1=0
=> (x-3)\(^2\)+(y+1)\(^2\)=0
pt vô nghiệm
4.
=> \(x^2\)+8x+16+(3y)\(^2\)-2.3.2y+4=0
=> (x+4)\(^2\)+(3y-2)\(^2\)=0
pt vô nghiệm
3.
=> (3y)\(^2\)+2.3y+1+\(x^2\)+4x+4
=> (3y+1)\(^2\)+(x+2)\(^2\)=0
pt vô nghiệm
Tìm y biết :
\(x^2+6x+y^2+2y+10=0\)
(x+3)2 + (y+1)2 =0
pt có cặp nghiệm: x= -3
y = -1
( nếu bn nào nghi ngờ sai, hãy thay x;y vào pt sẽ rõ)
cho biểu thức :
a) \(\sqrt{x^2-6x+22}+\sqrt{x^2-6x+10}=4\)
tính \(A=\sqrt{x^2-6x+22}-\sqrt{x^2-6x+10}\)
b) \(\sqrt{y^2+2y-10}-\sqrt{y^2+2y+15}=5\)
tính \(B=\sqrt{y^2-2y-10}+\sqrt{y^2+2y+15}\)
a/ Ta có \(\sqrt{x^2-6x+22}+\sqrt{x^2-6x+10}=4\)
\(\Leftrightarrow\left(\sqrt{x^2-6x+22}+\sqrt{x^2-6x+10}\right)\left(\sqrt{x^2-6x+22}-\sqrt{x^2-6x+10}\right)=4A\)
\(\Leftrightarrow4A=\left(x^2-6x+22\right)-\left(x^2-6x+10\right)\)
\(\Leftrightarrow4A=12\Leftrightarrow A=3\)
b/ Tương tự.
tìm các số tự nhiên x,y biết x^2-6x+4y+2y+1+10=0
a \(x^2+x-xy-2y^2-2y=0\)
x\(^2\)\(+y^2=1\)
b \(6x^2-3xy+x=1-y\)
\(x^2+y^2=1\)
Chắc là giải hệ phương trình?
a.
\(\left\{{}\begin{matrix}x^2+x-xy-2y^2-2y=0\\x^2+y^2=1\end{matrix}\right.\)
Xét pt: \(x^2+x-xy-2y^2-2y=0\)
\(\Leftrightarrow\left(x^2-xy-2y^2\right)+x-2y=0\)
\(\Leftrightarrow\left(x+y\right)\left(x-2y\right)+\left(x-2y\right)=0\)
\(\Leftrightarrow\left(x+y+1\right)\left(x-2y\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-y-1\\x=2y\end{matrix}\right.\)
TH1: \(x=-y-1\) thế vào \(x^2+y^2=1\)
\(\Rightarrow\left(-y-1\right)^2+y^2=1\)
\(\Leftrightarrow2y^2+2y=0\Rightarrow\left[{}\begin{matrix}y=0\Rightarrow x=-1\\y=-1\Rightarrow x=0\end{matrix}\right.\)
TH2: \(x=2y\) thế vào \(x^2+y^2=1\)
\(\Rightarrow\left(2y\right)^2+y^2=1\Leftrightarrow5y^2=1\)
\(\Rightarrow\left[{}\begin{matrix}y=\dfrac{1}{\sqrt{5}}\Rightarrow x=\dfrac{2}{\sqrt{5}}\\y=-\dfrac{1}{\sqrt{5}}\Rightarrow x=-\dfrac{2}{\sqrt{5}}\end{matrix}\right.\)
b.
\(\left\{{}\begin{matrix}6x^2-3xy+x=1-y\\x^2+y^2=1\end{matrix}\right.\)
Xét pt: \(6x^2-3xy+x=1-y\)
\(\Leftrightarrow\left(6x^2+x-1\right)-3xy+y=0\)
\(\Leftrightarrow\left(3x-1\right)\left(2x+1\right)-y\left(3x-1\right)=0\)
\(\Leftrightarrow\left(3x-1\right)\left(2x+1-y\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{3}\\y=2x+1\end{matrix}\right.\)
Thế vào \(x^2+y^2=1\) tương tự câu a...
Tìm các cặp số (x;y) nguyên
x^2-2y+x-2=-7
(x+2)^2+y^2-2y+1=0
x^2-6x+9+(2y-4)^4=0
Giải các hệ phương trình sau:
a) \(\left\{{}\begin{matrix}4x^2-4xy-14x-3y^2+y+10=0\\5\sqrt{xy}+2x+2y=6\sqrt{y}-8\end{matrix}\right.\)
b) \(\left\{{}\begin{matrix}2x^4+3x^2y+4x^2-2y^2+3y+2=0\\\sqrt{x\left(y-1\right)}+2y+2\sqrt{y-1}=3x+2\sqrt{x}+2\end{matrix}\right.\)
c) \(\left\{{}\begin{matrix}x^6+3x^2-y^3-6y^2-15y-14=0\\\sqrt{xy+2x-y-2}+6x-2y=10\end{matrix}\right.\)
d) \(\left\{{}\begin{matrix}xy+x+y=x^2-2y^2\\x\sqrt{2y}-y\sqrt{x-1}=2x-2y\end{matrix}\right.\)