Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
....

\(x^2+x-xy-2y^2-2y=0\)

x\(^2\)\(+y^2=1\)

\(6x^2-3xy+x=1-y\)

\(x^2+y^2=1\)

Nguyễn Việt Lâm
23 tháng 7 2021 lúc 13:49

Chắc là giải hệ phương trình?

a.

\(\left\{{}\begin{matrix}x^2+x-xy-2y^2-2y=0\\x^2+y^2=1\end{matrix}\right.\)

Xét pt: \(x^2+x-xy-2y^2-2y=0\)

\(\Leftrightarrow\left(x^2-xy-2y^2\right)+x-2y=0\)

\(\Leftrightarrow\left(x+y\right)\left(x-2y\right)+\left(x-2y\right)=0\)

\(\Leftrightarrow\left(x+y+1\right)\left(x-2y\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-y-1\\x=2y\end{matrix}\right.\) 

TH1: \(x=-y-1\) thế vào \(x^2+y^2=1\)

\(\Rightarrow\left(-y-1\right)^2+y^2=1\)

\(\Leftrightarrow2y^2+2y=0\Rightarrow\left[{}\begin{matrix}y=0\Rightarrow x=-1\\y=-1\Rightarrow x=0\end{matrix}\right.\)

TH2: \(x=2y\) thế vào \(x^2+y^2=1\)

\(\Rightarrow\left(2y\right)^2+y^2=1\Leftrightarrow5y^2=1\)

\(\Rightarrow\left[{}\begin{matrix}y=\dfrac{1}{\sqrt{5}}\Rightarrow x=\dfrac{2}{\sqrt{5}}\\y=-\dfrac{1}{\sqrt{5}}\Rightarrow x=-\dfrac{2}{\sqrt{5}}\end{matrix}\right.\)

Nguyễn Việt Lâm
23 tháng 7 2021 lúc 13:53

b.

\(\left\{{}\begin{matrix}6x^2-3xy+x=1-y\\x^2+y^2=1\end{matrix}\right.\)

Xét pt: \(6x^2-3xy+x=1-y\)

\(\Leftrightarrow\left(6x^2+x-1\right)-3xy+y=0\)

\(\Leftrightarrow\left(3x-1\right)\left(2x+1\right)-y\left(3x-1\right)=0\)

\(\Leftrightarrow\left(3x-1\right)\left(2x+1-y\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{3}\\y=2x+1\end{matrix}\right.\)

Thế vào \(x^2+y^2=1\) tương tự câu a...


Các câu hỏi tương tự
Linh
Xem chi tiết
Hoàng Phúc
Xem chi tiết
lê duy mạnh
Xem chi tiết
lê duy mạnh
Xem chi tiết
Dung Vu
Xem chi tiết
ILoveMath
Xem chi tiết
Nguyễn Duy Long
Xem chi tiết
Dung Vu
Xem chi tiết
Le Minh Hieu
Xem chi tiết