Chắc là giải hệ phương trình?
a.
\(\left\{{}\begin{matrix}x^2+x-xy-2y^2-2y=0\\x^2+y^2=1\end{matrix}\right.\)
Xét pt: \(x^2+x-xy-2y^2-2y=0\)
\(\Leftrightarrow\left(x^2-xy-2y^2\right)+x-2y=0\)
\(\Leftrightarrow\left(x+y\right)\left(x-2y\right)+\left(x-2y\right)=0\)
\(\Leftrightarrow\left(x+y+1\right)\left(x-2y\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-y-1\\x=2y\end{matrix}\right.\)
TH1: \(x=-y-1\) thế vào \(x^2+y^2=1\)
\(\Rightarrow\left(-y-1\right)^2+y^2=1\)
\(\Leftrightarrow2y^2+2y=0\Rightarrow\left[{}\begin{matrix}y=0\Rightarrow x=-1\\y=-1\Rightarrow x=0\end{matrix}\right.\)
TH2: \(x=2y\) thế vào \(x^2+y^2=1\)
\(\Rightarrow\left(2y\right)^2+y^2=1\Leftrightarrow5y^2=1\)
\(\Rightarrow\left[{}\begin{matrix}y=\dfrac{1}{\sqrt{5}}\Rightarrow x=\dfrac{2}{\sqrt{5}}\\y=-\dfrac{1}{\sqrt{5}}\Rightarrow x=-\dfrac{2}{\sqrt{5}}\end{matrix}\right.\)
b.
\(\left\{{}\begin{matrix}6x^2-3xy+x=1-y\\x^2+y^2=1\end{matrix}\right.\)
Xét pt: \(6x^2-3xy+x=1-y\)
\(\Leftrightarrow\left(6x^2+x-1\right)-3xy+y=0\)
\(\Leftrightarrow\left(3x-1\right)\left(2x+1\right)-y\left(3x-1\right)=0\)
\(\Leftrightarrow\left(3x-1\right)\left(2x+1-y\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{3}\\y=2x+1\end{matrix}\right.\)
Thế vào \(x^2+y^2=1\) tương tự câu a...