Cho a, b, c là độ dài 3 cạnh của 1 tam giác và \(a^2+b^2\ge5c^2\)
CMR : c là độ dài cạnh bé nhất
Cho a,b,c là độ dài 3 cạnh của 1 tam giác
CMR nếu 2a+3b > 8c thì c là độ dài cạnh bé nhất
CMR : Nếu a,b,c là độ dài của các cạnh của 1 tam giác thỏa mãn điều kiện a^2 + b^2 > c^2 thì c là độ dài của cạnh nhỏ nhất.
À tiện thể hỏi ai chơi mope.io ko :'>
cho a,b,c là độ dài 3 cạnh tam giác .
1.CMR : abc \(\ge\)( b + c - a ) ( a + c - b ) ( a + b - c )
2. \(\frac{1}{a+b},\frac{1}{b+c},\frac{1}{c+a}\) cũng là độ dài 3 cạnh của 1 tam giác.
1. đặt b + c - a = x, a + c - b = y , a + b - c = z thì x,y,z > 0
theo bất đẳng thức ( x + y ) ( y + z ) ( x + z ) \(\ge\)8xyz ( tự chứng minh ) , ta có :
2a . 2b . 2c \(\ge\)8 ( b + c - a ) ( a + c - b ) ( a + b - c )
\(\Rightarrow\)abc \(\ge\)( b + c - a ) ( a + c - b ) ( a + b - c )
Dấu " = " xảy ra \(\Leftrightarrow\)a = b = c
Ta có a + b > c, b + c > a, a + c > b
Xét \(\frac{1}{a+c}+\frac{1}{b+c}>\frac{1}{a+c+b}+\frac{1}{b+c+a}=\frac{2}{a+b+c}>\frac{2}{a+b+a+b}=\frac{1}{a+b}\)
tương tự : \(\frac{1}{a+b}+\frac{1}{a+c}>\frac{1}{b+c},\frac{1}{a+b}+\frac{1}{b+c}>\frac{1}{a+c}\)
vậy ...
Cách khác của câu 1.
Ta có:
\(\hept{\begin{cases}a\ge\left|b-c\right|\\b\ge\left|a-c\right|\\c\ge\left|a-b\right|\end{cases}}\Rightarrow\hept{\begin{cases}a\ge\left(b-c\right)^2\\b\ge\left(a-c\right)^2\\c\ge\left(a-b\right)^2\end{cases}}\Rightarrow\hept{\begin{cases}a^2\ge a^2-\left(b-c\right)^2\left(1\right)\\b^2\ge b^2-\left(a-c\right)^2\left(2\right)\\c^2\ge c^2-\left(a-b\right)^2\left(3\right)\end{cases}}\)
Nhân vế theo vế của (1);(2);(3) ta có:
\(a^2b^2c^2\ge\left[a^2-\left(b-c\right)^2\right]\left[b^2-\left(a-c\right)^2\right]\left[c^2-\left(a-b\right)^2\right]\)
\(\Rightarrow a^2b^2c^2\ge\left(b+c-a\right)^2\left(a+c-b\right)^2\left(a+b-c\right)^2\)
\(\Rightarrowđpcm\)
Cho a,b,c là độ dài 3 cạnh của tam giác ABC thảo mãn a^2 + b^2 > 5c^2. CMr c<a và c<b
Cmr A=4a^2b^2-(a^2+b^2-c^2)^2>0 vs a,b,c là độ dài 3 cạnh của 1 tam giác
Lời giải:
\(A=(2ab)^2-(a^2+b^2-c^2)^2=[2ab+(a^2+b^2-c^2)][2ab-(a^2+b^2-c^2)]\)
\(=[(a+b)^2-c^2][c^2-(a-b)^2]=(a+b-c)(a+b+c)(c-a+b)(c+a-b)\)
\(=(a+b+c)(a+b-c)(b+c-a)(c+a-b)>0\) theo BĐT tam giác
Do đó ta có đpcm.
Cho a, b, c là độ dài 3 cạnh của 1 tam giác. CMR: \(a^4+b^4+c^4< 2a^2b^2+2b^2c^2+2a^2c^2\)
cho a,b,c là độ dài 3 cạnh của 1 tam giác .cmr a2+2ab> b2+c2
a−b<c<=>a2+b2−2ab<c2a−b<c<=>a2+b2−2ab<c2
b−c<a<=>b2+c2−2bc<a2b−c<a<=>b2+c2−2bc<a2
a−c<b<=>a2+c2−2ac<b2
chuyển qua là được
Cho a,b,c là độ dài 3 cạnh tam giác có chu vi = 2 cmr : 1+abc
chờ a,b,c là độ dài 3 cạnh của 1 tam giác và a<=b<=c. CMR(a+b+c)^2<=9bc
\(\left(a+b+c\right)^2\le\left(2b+c\right)^2\)
Xét hiệu:
\(\left(2b+c\right)^2-9bc=4b^2-5bc+c^2=\left(b-c\right)\left(4b-c\right)\le0\)
Dễ thấy b - c < 0
\(c< a+b\le2b\)
=> 4b - c > 0
Q.E.D dấu "=" xảy ra khi a = b = c