Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Hoàng Phúc
Xem chi tiết
Hoàng Phúc
25 tháng 12 2016 lúc 11:33

mn khỏi phải giải,mk biết làm rồi

Nguyễn Khánh Hà
Xem chi tiết
nguyễn thị diệu linh
Xem chi tiết
Thanh Tùng DZ
27 tháng 5 2019 lúc 16:05

1. đặt b + c - a = x, a + c - b = y , a + b - c = z thì x,y,z > 0

theo bất đẳng thức ( x + y ) ( y + z ) ( x + z ) \(\ge\)8xyz ( tự chứng minh ) , ta có :

2a . 2b . 2c \(\ge\)8 ( b + c - a ) ( a + c - b ) ( a + b - c )

\(\Rightarrow\)abc \(\ge\)( b + c - a ) ( a + c - b ) ( a + b - c )

Dấu " = " xảy ra \(\Leftrightarrow\)a = b = c

Thanh Tùng DZ
27 tháng 5 2019 lúc 16:07

Ta có a + b > c, b + c > a, a + c > b

Xét \(\frac{1}{a+c}+\frac{1}{b+c}>\frac{1}{a+c+b}+\frac{1}{b+c+a}=\frac{2}{a+b+c}>\frac{2}{a+b+a+b}=\frac{1}{a+b}\)

tương tự : \(\frac{1}{a+b}+\frac{1}{a+c}>\frac{1}{b+c},\frac{1}{a+b}+\frac{1}{b+c}>\frac{1}{a+c}\)

vậy ...

zZz Cool Kid_new zZz
30 tháng 5 2019 lúc 20:15

Cách khác của câu 1.

Ta có:

\(\hept{\begin{cases}a\ge\left|b-c\right|\\b\ge\left|a-c\right|\\c\ge\left|a-b\right|\end{cases}}\Rightarrow\hept{\begin{cases}a\ge\left(b-c\right)^2\\b\ge\left(a-c\right)^2\\c\ge\left(a-b\right)^2\end{cases}}\Rightarrow\hept{\begin{cases}a^2\ge a^2-\left(b-c\right)^2\left(1\right)\\b^2\ge b^2-\left(a-c\right)^2\left(2\right)\\c^2\ge c^2-\left(a-b\right)^2\left(3\right)\end{cases}}\)

Nhân vế theo vế của (1);(2);(3) ta có:

\(a^2b^2c^2\ge\left[a^2-\left(b-c\right)^2\right]\left[b^2-\left(a-c\right)^2\right]\left[c^2-\left(a-b\right)^2\right]\)

\(\Rightarrow a^2b^2c^2\ge\left(b+c-a\right)^2\left(a+c-b\right)^2\left(a+b-c\right)^2\)

\(\Rightarrowđpcm\)

Nguyễn Hà Anh
Xem chi tiết
UTV Kool
Xem chi tiết
nthv_.
20 tháng 10 2021 lúc 23:48

Akai Haruma
20 tháng 10 2021 lúc 23:49

Lời giải:
\(A=(2ab)^2-(a^2+b^2-c^2)^2=[2ab+(a^2+b^2-c^2)][2ab-(a^2+b^2-c^2)]\)

\(=[(a+b)^2-c^2][c^2-(a-b)^2]=(a+b-c)(a+b+c)(c-a+b)(c+a-b)\)

\(=(a+b+c)(a+b-c)(b+c-a)(c+a-b)>0\) theo BĐT tam giác

Do đó ta có đpcm.

nthv_.
20 tháng 10 2021 lúc 23:59

undefined

Big City Boy
Xem chi tiết
Nguyễn Trần Uyển Nhi
Xem chi tiết
Bùi Chí Phương Nam
5 tháng 3 2016 lúc 20:25

a−b<c<=>a2+b2−2ab<c2a−b<c<=>a2+b2−2ab<c2

b−c<a<=>b2+c2−2bc<a2b−c<a<=>b2+c2−2bc<a2

a−c<b<=>a2+c2−2ac<b2

chuyển qua là được

Nguyễn Trần Uyển Nhi
5 tháng 3 2016 lúc 22:30

cảm ơn bạn nhiều nha :)

Yamato Bùi
Xem chi tiết
Vũ Phạm Gia Hân
19 tháng 3 2022 lúc 17:38

thiếu dữ kiện?

vu van tu
Xem chi tiết
KAl(SO4)2·12H2O
14 tháng 3 2018 lúc 20:28

\(\left(a+b+c\right)^2\le\left(2b+c\right)^2\)

Xét hiệu: 

\(\left(2b+c\right)^2-9bc=4b^2-5bc+c^2=\left(b-c\right)\left(4b-c\right)\le0\)

Dễ thấy b - c < 0

\(c< a+b\le2b\)

=> 4b - c > 0

Q.E.D dấu "=" xảy ra khi a = b = c