chứng tỏ đa thức x2+2x+5 không có nghiệm
Chứng tỏ rằng đa thức x2 + 2x + 2 không có nghiệm
Ta có: x2 + 2x + 2 = x2 + x + x + 1 + 1
= x(x + 1) + (x + 1) + 1
= (x + 1)(x + 1) + 1 = (x + 1)2 + 1
Vì (x + 1)2 ≥ 0 với mọi x ∈ R, nên (x + 1)2 + 1 > 0 với mọi x ∈ R
Vậy đa thức x2 + 2x + 2 không có nghiệm.
\(x^2+2x-8=x^2+2x+1-9\)
mà : \(x^2+2x+1=x^2+x+x+1=x\left(x+1\right)+\left(x+1\right)=\left(x+1\right)^2\)
\(=\left(x+1\right)^2-9=\left(x+1-3\right)\left(x+1+3\right)=\left(x-2\right)\left(x+4\right)\)
giả sử đa thức trên có nghiệm khi
Đặt \(\left(x-2\right)\left(x+4\right)=0\Leftrightarrow x=-4;x=2\)
Vậy giả sử là đúng hay ko xảy ra đpcm ( đa thức trên ko có nghiệm )
Chứng tỏ các đa thức sau ko có nghiệm
a, x2 + 4x +10
b, x2 - 2x + 5
a, \(x^2\) + 4\(x\) + 10
= ( \(x^2\) + 4\(x\) + 4) + 6
= (\(x\) + 2)2 + 6
vì (\(x\) + 2)2 ≥ 0
⇒ (\(x\) + 2)2 + 6 ≥ 6 > 0 vậy đa thức đã cho vô nghiệm (đpcm)
b, \(x^2\) - 2\(x\) + 5
= (\(x^2\) - 2\(x\) + 1) + 4
= (\(x\) - 1)2 + 4
Vì (\(x\) - 1)2 ≥ 0 ⇒ (\(x\) -1)2 + 4≥ 4 > 0
Vậy đa thức đã cho vô nghiệm (đpcm)
Chứng tỏ rằng đa thức x2 + 2x + 2 không có nghiệm
Ta có: x^2+ 2x + 2 = x2 + x + x + 1 + 1
= x(x + 1) + (x + 1) + 1
= (x + 1)(x + 1) + 1 = (x + 1)^2 + 1
Vì (x + 1)^2 ≥ 0 với mọi x ∈ R, nên (x + 1)2 + 1 > 0 với mọi x ∈ R
Vậy đa thức x^2 + 2x + 2 không có nghiệm.
Study Well ^_^
chứng tỏ đa thức sau k có nghiệm
f(x)=x2+2x+1-2x
\(f\left(x\right)=x^2+1\ge1\)
=> Đa thức không có nghiệm
b) Cho đa thức f(x) = x2 - 5x - 35. Chứng tỏ x = -5 là nghiệm của đa thức f(x) và
x = 5 không là nghiệm của đa thức f(x).
Cái nào cũng không phải là nghiệm hết ạ;-;
Cho đa thức P(x)= x2 - 6x + 12. Chứng tỏ rằng đa thức trên không có nghiệm
\(x^2-6x+12\)
\(=x^2-3x-3x+9+3\)
\(=\left(x^2-3x\right)+\left(-3x+9\right)+3\)
\(=x\left(x-3\right)-3\left(x-3\right)+3\)
\(=\left(x-3\right)\left(x-3\right)+3\)
\(=\left(x-3\right)^2+3\)
Ta có: \(\left(x-3\right)^2\ge0\)
\(\Rightarrow\left(x-3\right)^2+3>0\)
Vậy \(P\left(x\right)=x^2-6x+12\) không có nghiệm
Chứng tỏ đa thức x2 + x +3/4 không có nghiệm
A(\(x\)) = \(x^2\) + \(x\) + \(\dfrac{3}{4}\)
A(\(x\)) = (\(x^2\) + 2\(x\).\(\dfrac{1}{2}\) + \(\dfrac{1}{4}\)) + \(\dfrac{2}{4}\)
A(\(x\)) = (\(x\) + \(\dfrac{1}{2}\))2 + \(\dfrac{2}{4}\)
Vì (\(x+\dfrac{1}{2}\))2 ≥ 0 ⇒ (\(x\) + \(\dfrac{1}{2}\))2 + \(\dfrac{2}{4}\) ≥ \(\dfrac{2}{4}\)
⇒ \(x^2\) + \(x\) + \(\dfrac{3}{4}\) > 0 ∀ \(x\)
Vậy A(\(x\)) = 0 vô nghiệm (đpcm)
`@` `\text {Ans}`
`\downarrow`
Ta có: \(x^2\ge0\text{ }\forall\text{ x}\)
`->`\(x^2+x+\dfrac{3}{4}\ge\dfrac{3}{4}>0\text{ }\forall\text{ x}\)
Mà `3/4 \ne 0`
`->` Đa thức vô nghiệm.
Xét `f(x)=(x^2+x+3)/4`
Ta có `x^2+x+3=(x^2+x+1/4)+11/4=(x+1/2)^2+11/4>0AAx`
`=>f(x)>0` hay `f(x)` vô nghiệm
Cho đa thức P x x2 6x 12. Chứng tỏ rằng đa thức trên không có nghiệm