Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Hoàng Anh
Xem chi tiết
Nguyễn Lê Phước Thịnh
29 tháng 10 2021 lúc 21:08

\(\Leftrightarrow\left(a+b\right)^3+c^3-3ab\left(a+b\right)-3abc=0\)

\(\Leftrightarrow\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ac\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}a+b+c=0\\a=b=c\end{matrix}\right.\)

Nguyễn Hoàng Minh
29 tháng 10 2021 lúc 21:10

\(a^3+b^3+c^3=3abc\\ \Leftrightarrow a^3+b^3+c^3-3abc=0\\ \Leftrightarrow\left(a+b\right)^3-3ab\left(a+b\right)+c^3-3abc=0\\ \Leftrightarrow\left(a+b+c\right)\left(a^2+2ab+b^2-ac-bc+c^2\right)-3ab\left(a+b+c\right)=0\\ \Leftrightarrow\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}a+b+c=0\\a^2+b^2+c^2-ab-bc-ca=0\left(1\right)\end{matrix}\right.\\ \left(1\right)\Leftrightarrow2a^2+2b^2+2c^2-2ab-2bc-2ac=0\\ \Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\\ \Leftrightarrow\left\{{}\begin{matrix}a=b\\b=c\\c=a\end{matrix}\right.\Leftrightarrow a=b=c\)

Vậy \(a^3+b^3+c^3=3abc\Leftrightarrow\left[{}\begin{matrix}a+b+c=0\\a=b=c\end{matrix}\right.\)

Minh nhật
Xem chi tiết
Kudo Shinichi
1 tháng 11 2021 lúc 19:01

a^3 + b^3 + c^3 - 3abc

=(a^3+3a^2b+3ab^2+b^3)+c^3-(3a^2b+3ab^2+3abc)

=(a+b)^3+c^3-3ab(a+b+c)

=(a+b+c)[(a+b)^2-(a+b)c+c^2]-3ab(a+b+c)

=(a+b+c)(a^2+b^2+c^2+2ab-3ab-bc-ac)

=(a+b+c)(a^2+b^2+c^2-ab-bc-ac)

Thay a + b + c = 0, ta có:

0(a^2+b^2+c^2-ab-bc-ac)

=0

Vậy nếu a + b + c = 0 thì a^3 + b^3 + c^3 - 3abc = 0

phú quảng nguyen
5 tháng 11 2021 lúc 19:51

Theo bài ra, ta có: a+b+c
Suy ra: 3(a+b+c)-3abc=0
Suy ra: -3abc=0
Tương đương: -3*(b+c)*(a+c)*(a+b)=0
Tương đương: -3* a^2+b^2+c^2=0
Tương đương: -3*0=0
Suy ra: nếu a+b+c=0 thì a3+b3+c3-3abc=0(đpcm)


 

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
23 tháng 10 2017 lúc 9:17

+) Ta có: a 3 + b 3 = a + b 3 - 3 a b a + b

Thật vậy, VP = a + b 3  – 3ab (a + b)

= a 3 + 3 a 2 b + 3 a b 2 + b 3 - 3 a 2 b - 3 a b 2

= a 3 + b 3  = VT

Nên  a 3 + b 3 + c 3 = a + b 3 - 3 a b a + b + c 3  (1)

Ta có: a + b + c = 0 ⇒ a + b = - c (2)

Thay (2) vào (1) ta có:

a 3 + b 3 + c 3 = - c 3 - 3 a b - c + c 3 = - c 3 + 3 a b c + c 3 = 3 a b c

Vế trái bằng vế phải nên đẳng thức được chứng minh.

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
7 tháng 5 2018 lúc 18:31

Ta có: a + b + c = 0

⇒ a + b = -c ⇒ (a + b)3 = (-c)3

⇒ a3 + b3 + 3ab(a + b) = -c3 ⇒ a3 + b3 + 3ab(-c) + c3 = 0

⇒ a3 + b3 + c3 = 3abc

Phạm Thanh Lâm
Xem chi tiết
Nguyễn Lê Phước Thịnh
3 tháng 1 2022 lúc 20:58

\(\Leftrightarrow a^3+b^3+c^3-3abc>=0\)

\(\Leftrightarrow\left(a+b\right)^3+c^3-3ab\left(a+b\right)-3abc>=0\)

\(\Leftrightarrow\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ac\right)>=0\)

\(\Leftrightarrow2a^2+2b^2+2c^2-2ab-2bc-2ac>=0\)(vì a+b+c>0)

\(\Leftrightarrow\left(a-b\right)^2+\left(a-c\right)^2+\left(b-c\right)^2>=0\)(luôn đúng)

Nguyễn Hoàng Minh
3 tháng 1 2022 lúc 20:58

\(a^3+b^3+c^3\ge3abc\\ \Leftrightarrow\left(a+b\right)^3-3ab\left(a+b\right)+c^3-3abc\ge0\\ \Leftrightarrow\left(a+b+c\right)\left(a^2+2ab+b^2-ac-bc+c^2\right)-3ab\left(a+b+c\right)\ge0\\ \Leftrightarrow\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)\ge0\)

Vì \(a,b,c>0\Leftrightarrow a+b+c>0\)

Lại có \(a^2+b^2+c^2-ab-bc-ca=\dfrac{1}{2}\left[\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\right]\ge0\)

Nhân vế theo vế ta được đpcm

Dấu \("="\Leftrightarrow a=b=c\)

duong thu
3 tháng 1 2022 lúc 21:00

⇔a3+b3+c3−3abc>=0⇔a3+b3+c3−3abc>=0

⇔(a+b)3+c3−3ab(a+b)−3abc>=0⇔(a+b)3+c3−3ab(a+b)−3abc>=0

⇔(a+b+c)(a2+b2+c2−ab−bc−ac)>=0⇔(a+b+c)(a2+b2+c2−ab−bc−ac)>=0

⇔2a2+2b2+2c2−2ab−2bc−2ac>=0⇔2a2+2b2+2c2−2ab−2bc−2ac>=0(vì a+b+c>0)

⇔(a−b)2+(a−c)2+(b−c)2>=0⇔(a−b)2+(a−c)2+(b−c)2>=0(luôn đúng)

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
22 tháng 5 2019 lúc 13:47

Võ Tài Hưng
21 tháng 12 2021 lúc 15:05

a3+b3+c3= (a+b)3-3ab(a+b)+c3
Thay a+b=-c vào, ta được: 
a3 + b3 +c3 = (-c)3 -3ab(-c) +c3 = 3abc (đpcm)

Khách vãng lai đã xóa
Xem chi tiết
Kiệt Nguyễn
9 tháng 7 2019 lúc 19:59

Câu hỏi của trần thị bảo trân - Toán lớp 8 - Học toán với OnlineMath

Tham khảo ở link trên nhé.

zZz Cool Kid_new zZz
9 tháng 7 2019 lúc 21:03

\(a+b+c=0\)

\(-a=b+c\)

\(\Rightarrow-a^3=\left(b+c\right)^3\)

\(\Rightarrow-a^3=b^3+c^3+3bc\left(b+c\right)\)

\(\Rightarrow a^3+b^3+c^3=3abc\)

Huyền Nhi
9 tháng 7 2019 lúc 21:27

\(a+b+c=0\)

\(\Rightarrow a+b=-c\)

\(\Rightarrow\left(a+b\right)^3=-c^3\)

\(\Rightarrow a^3+3ab\left(a+b\right)+b^3+c^3=0\)

\(\Rightarrow a^3+b^3+c^3=-3ab\left(a+b\right)=3abc\left(\text{ vì }a+b=-c\right)\)

Lelemalin
Xem chi tiết
Nguyễn Lê Phước Thịnh
21 tháng 8 2021 lúc 21:03

a: Ta có: \(a+b+c=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}a+b=-c\\a+c=-b\\b+c=-a\end{matrix}\right.\)

Ta có: a+b+c=0

\(\Leftrightarrow\left(a+b+c\right)^3=0\)

\(\Leftrightarrow a^3+b^3+c^3+3\left(a+b\right)\left(a+c\right)\left(b+c\right)=0\)

\(\Leftrightarrow a^3+b^3+c^3-3abc=0\)

\(\Leftrightarrow a^3+b^3+c^3=3abc\)

b: Ta có: \(a^3+b^3+c^3=3abc\)

\(\Leftrightarrow a^3+b^3+c^3-3abc=0\)

\(\Leftrightarrow\left(a+b\right)^3+c^3-3ab\left(a+b\right)-3abc=0\)

\(\Leftrightarrow\left(a+b+c\right)\left(a^2+2ab+b^2-ac-bc+c^2\right)-3ab\left(a+b+c\right)=0\)

\(\Leftrightarrow\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ac\right)=0\)

\(\Leftrightarrow a+b+c=0\)

Lấp La Lấp Lánh
21 tháng 8 2021 lúc 21:14

a) \(a^3+b^3+c^3=3abc\Leftrightarrow\left(a+b\right)^3+c^3-3a^2b-3ab^2-3abc=0\Leftrightarrow\left(a+b+c\right)\left[\left(a+b\right)^2-\left(a+b\right)c+c^2\right]-3ab\left(a+b+c\right)=0\Leftrightarrow\left(a+b+c\right)\left(a^2+2ab+b^2-ac-bc+c^2-3ab\right)=0\Leftrightarrow\left(a+b+c\right)\left(a^2+b^2+c^2-ab-ac-bc\right)=0\)(đúng do a+b+c = 0)

Lấp La Lấp Lánh
21 tháng 8 2021 lúc 21:21

b) Ta có: \(\left\{{}\begin{matrix}\left(a-b\right)^2\ge0\\\left(b-c\right)^2\ge0\\\left(c-a\right)^2\ge0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}a^2+b^2\ge2ab\\b^2+c^2\ge2bc\\c^2+a^2\ge2ac\end{matrix}\right.\Rightarrow a^2+b^2+c^2\ge ab+ac+bc\)

\(ĐTXR\Leftrightarrow a=b=c\), mà a,b,c đôi một khác nhau => Đẳng thức không xảy ra\(\Rightarrow a^2+b^2+c^2>ab+ac+bc\Rightarrow a^2+b^2+c^2-ab-ac-bc>0\)

Ta có: \(a^3+b^3+c^3=3abc\Leftrightarrow\left(a+b\right)^3+c^3-3a^2b-3ab^2-3abc=0\Leftrightarrow\left(a+b+c\right)\left[\left(a+b\right)^2-\left(a+b\right)c+c^2\right]-3ab\left(a+b+c\right)=0\Leftrightarrow\left(a+b+c\right)\left(a^2+2ab+b^2-ac-bc+c^2-3ab\right)=0\Leftrightarrow\left(a+b+c\right)\left(a^2+b^2+c^2-ab-ac-bc\right)=0\)\(\Rightarrow a+b+c=0\)( do (1))

Lelemalin
Xem chi tiết
Nguyễn Lê Phước Thịnh
21 tháng 8 2021 lúc 21:29

a: Ta có: a+b+c=0

\(\Leftrightarrow\left\{{}\begin{matrix}a+b=-c\\a+c=-b\\b+c=-a\end{matrix}\right.\)

Ta có: a+b+c=0

\(\Leftrightarrow\left(a+b+c\right)^3=0\)

\(\Leftrightarrow a^3+b^3+c^3+3\left(a+b\right)\left(b+c\right)\left(a+c\right)=0\)

\(\Leftrightarrow a^3+b^3+c^3-3abc=0\)

\(\Leftrightarrow a^3+b^3+c^3=3abc\)

b: Ta có: \(a^3+b^3+c^3=3abc\)

\(\Leftrightarrow\left(a+b\right)^3+c^3-3ab\left(a+b\right)-3abc=0\)

\(\Leftrightarrow\left(a+b+c\right)\left(a^2+2ab+b^2-ac-bc+c^2\right)-3ab\left(a+b+c\right)=0\)

\(\Leftrightarrow\left(a+b+c\right)\left(a^2+b^2+c^2-ab-ac-bc\right)=0\)

\(\Leftrightarrow a+b+c=0\)

Thành Nam Nguyễn
Xem chi tiết
Nguyễn Việt Lâm
26 tháng 3 2023 lúc 22:16

Do a;b;c là độ dài 3 cạnh của 1 tam giác nên \(a;b;c>0\)

\(a^3+b^3+c^3-3abc=0\)

\(\Leftrightarrow a^3+b^3+3ab\left(a+b\right)+c^3-3ab\left(a+b\right)-3abc=0\)

\(\Leftrightarrow\left(a+b\right)^3+c^3-3ab\left(a+b+c\right)=0\)

\(\Leftrightarrow\left(a+b+c\right)\left[\left(a+b\right)^2-c\left(a+b\right)+c^2\right]-3ab\left(a+b+c\right)=0\)

\(\Leftrightarrow\left(a+b+c\right)\left(a^2+b^2+c^2+2ab-ac-bc\right)-3ab\left(a+b+c\right)=0\)

\(\Leftrightarrow\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)=0\)

\(\Leftrightarrow a^2+b^2+c^2-ab-bc-ca=0\)

\(\Leftrightarrow2a^2+2b^2+2c^2-2ab-2bc-2ca=0\)

\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)

\(\Rightarrow\left\{{}\begin{matrix}a-b=0\\b-c=0\\c-a=0\end{matrix}\right.\) \(\Rightarrow a=b=c\)

Hay tam giác ABC đều