tìm số tự nhiên n để A=\(\frac{7}{n+2}\)là số nguyên
Tìm các số tự nhiên n để phân số A=\(\frac{n+7}{n+2}\)có giá trị là một số nguyên ?
Để A nguyên
=>n+7 chia hết cho n+2
Mà n+2 chia hết cho n+2
=>n+7-n+2 chia hết cho n+2
=>5 chia hết cho n+2
=>n+2E{-1;-5;1;5}
=>nE{-3;-7;-1;3}
Thử lại nx là đc
n+7/n+2 là số nguyên khi n+7chia hết cho n+2
ta có: n+7chia hết cho n+2
suy ra (n+2)+5 chia hết cho n+2
suy ra 5 chia hết cho n+2
N+2 thuộc ước của 5
còn sau đó bạn biết làm gì rồi đó
Để A nguyên thì n+7 chia hết cho n+2
<=> n + 2 + 5 chia hết cho n+2
=> 5 chia hết cho n+2
=> n + 2 E Ư(5) = {-1;-5;1;5}
Ta có bảng :
n + 2 | -5 | -1 | 1 | 5 |
n | -7 | -3 | -1 | 3 |
tìm số tự nhiên n để \(\frac{n^2+7}{n+7}\) là số tự nhiên
bài 2: tìm số tự nhiên n để \(\frac{n^2+8}{n+8}\) là số tự nhiên
Bài 1:
Để \(\dfrac{n^2+7}{n+7}\) là số tự nhiên thì \(\left\{{}\begin{matrix}n^2+7⋮n+7\\n>-7\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}n^2-49+56⋮n+7\\n>-7\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}n+7\in\left\{1;-1;2;-2;4;-4;7;-7;8;-8;14;-14;28;-28;56;-56\right\}\\n>-7\end{matrix}\right.\)
\(\Leftrightarrow n\in\left\{-6;-5;-3;0;1;7;21;49\right\}\)
Tìm các số tự nhiên n để phân số A = \(\frac{n+7}{n-2}\) có giá trị là một số nguyên.
Để A nguyên thì :
\(n+7⋮n-2\)
\(n-2+9⋮n-2\)
mà \(n-2⋮n-2\Rightarrow9⋮n-2\Rightarrow n-2\inƯ\left(9\right)=\left\{\pm1;\pm3;\pm9\right\}\)
Ta có bảng :
n-2 | 1 | -1 | 3 | -3 | 9 | -9 |
n | 3 | 1 | 5 | -1 | 11 | -7 |
Vậy,.........
tìm số tự nhiên n để phân số A = \(\frac{n+7}{n-2}\)có giá trị nguyên
Để A= n + 7 / n - 2 là số nguyên thì n + 7 chia hết cho n - 2
Ta có : n +7 chia hết cho n - 2
suy ra : n -2 + 9 chia hết cho n - 2
suy ra : 9 chia hết cho n- 2
n - 2 sẽ là ước của 9
suy ra : n = 11 ; -7 ; 3 ; 1 ; 5 ; -1
Cho phân số A=\(\frac{-5}{n-2}\)với n là số nguyên
a,Tìm n để A tồn tại
b,Tìm n để A là số nguyên
c,Tìm n để số tự nhiên để A <0
a)
Để A tồn tại thì mẫu số phải khác 0
Khi đó \(n-2\ne0\Rightarrow n\ne2\)
Vậy để A tồn tại thì \(n\ne2\)
b)
Để A là số nguyên hay \(-\frac{5}{n-2}\in Z\)
Để \(-\frac{5}{n-2}\in Z\Rightarrow n-2\inƯ\left(5\right)\)
\(\Rightarrow n-2\in\left\{1;5;-1;-5\right\}\)
\(\Rightarrow n\in\left\{3;7;1;-3\right\}\)
Vậy............
Để A < 0 thì \(-\frac{5}{n-2}< 0\)
\(\Rightarrow\frac{5}{n-2}>0\)
\(\Rightarrow n-2>0\Rightarrow n>2\)
Vậy để A < 0 thì n > 2
`k^2-k+10`
`=(k-1/2)^2+9,75>9`
`k^2-k+10` là số chính phương nên đặt
`k^2-k+10=a^2(a>3,a in N)`
`<=>4k^2-4k+40=4a^2`
`<=>(2k-1)^2+39=4a^2`
`<=>(2k-1-2a)(2k-1+2a)=-39`
`=>2k-2a-1,2k+2a-1 in Ư(39)={+-1,+-3,+-13,+-39}`
`2k+2a>6`
`=>2k+2a-1> 5`
`=>2k+2a-1=39,2k-2a-1=-1`
`=>2k+2a=40,2k-2a=0`
`=>a=k,4k=40`
`=>k=10`
Vậy `k=10` thì `k^2-k+10` là SCP
`+)2k+2a-1=13,2k-2a-1=-3`
`=>2k+2a=14,2k-2a=-2`
`=>k+a=7,k-a=-1`
`=>k=3`
Vậy `k=3` hoặc `k=10` thì ..........
Bài 1. Tìm số tự nhiên a nhỏ nhất để a : 7 dư 4; a : 9 dư 5 và a : 15 dư 8.
Bài 2. a) Tìm số tự nhiên n để 16 – 3n là ước của 2n + 1.
b) Tìm số tự nhiên n để n2 + 6n là số nguyên tố.
Bài 3. a) Tìm số nguyên tố p sao cho p + 2; p + 6; p + 8; p + 12; p + 14 cũng là số nguyên tố
b) Tìm số tự nhiên n để các số sau nguyên tố cùng nhau: 4n – 3 và 6n + 1
Bài 1: Tìm số tự nhiên n đẻ phân số \(\frac{n-1}{n+2}\)là một số nguyên
Bài 2: Tìm số tự nhiên a để ba phân số \(\frac{21}{a}\) ; \(\frac{22}{a-1}\); \(\frac{24}{a+1}\) đều là các số tự nhiên
Bài 1:
ĐKXĐ:\(n\ne-2\)
Ta có:\(\frac{n-1}{n+2}=1-\frac{3}{n+2}\)
Để phân số đó nguyên thì \(n+2\inƯ\left(3\right)\)
=> \(n+2=\left\{-3;-1;1;3\right\}\)
=> \(n=\left\{-5;-3;-1;1\right\}\)
Mà \(n\in N\)=> n=1
Bài 2:
ĐKXĐ \(a\ne1;-1\)
Để \(\frac{21}{a}\in N\)
Thì \(a\inƯ\left(21\right)\)
=>a={1;3;7;21} (1)
Để \(\frac{22}{a-1}\in N\)thì \(a-1\inƯ\left(22\right)\)
=>a-1={1;2;11;22}
=>a={1;3;12;23} (2)
Để \(\frac{24}{a+1}\in N\)Thì \(a+1\inƯ\left(24\right)\)
=> a+1={1;2;4;6;12;24}
=>a={0;1;3;5;11;23} (3)
Kết hợp (1);(2);(3) và ĐKXĐ ta có a=3 thì cả 3 phân số trên là số tự nhiên
Để \(\frac{n-1}{n+2}\in Z\) thì n - 1 chia hết cho n + 2
<=> n + 2 - 3 chia hết cho n + 2
<=> 3 chia hết cho n + 2
<=> n + 2 thuộc Ư(3) = {1;3}
Ta có bảng :
n + 2 | 3 | 1 |
n | 1 | -1 (loại) |
1, Tìm số tự nhiên n lớn nhất để n3 + 100 chia hết cho n + 10
2, Tìm các số tự nhiên p để tổng tất cả các ước số tự nhiên của p4 là 1 số chính phương
3, CM: a3 + b3 + c3 \(⋮\)9 thì abc\(⋮\)3
4, Tìm n để A là số chính phương: A = ( n + 3 )( 4n2 + 14n + 7 )
5, Tìm các cặp ( x,y ) thỏa mãn: 5x2 + 12xy + 8y2 - 4x - 4y = 33
6, Tìm a,b ( nguyên dương ) để \(\frac{a^2+b}{b^2-a},\frac{b^2 +a}{a^2-b}\)là số nguyên
\(n^3+100=n^2.\left(n+10\right)-10n^2+100\)
\(=n^2.\left(n+10\right)-10n.\left(n+10\right)+100n+100\)
\(=n^2.\left(n+10\right)-10n.\left(n+10\right)+100.\left(n+10\right)-900\)
\(=\left(n+10\right).\left(n^2-10n+100\right)-900\)
Để n3+100 chia hết cho n+10 => -900 chia hết cho n+10 => n+10 thuộc Ư(900)
Vì n lớn nhất => n+10 lớn nhất => n+10=900 => n=890
Vậy n=890
Xét a là một số tự nhiên bất kỳ. Dễ thấy, nếu a chia hết cho 3 => a3 chia hết cho 9 (1)
Xét: \(a\equiv1\left(mod9\right)\Rightarrow a^3\equiv1\left(mod9\right)\)(2)
\(a\equiv2\left(mod9\right)\Rightarrow a^3\equiv8\left(mod9\right)\)(3)
\(a\equiv4\left(mod9\right)\Rightarrow a^3\equiv64\equiv1\left(mod9\right)\)(4)
\(a\equiv5\left(mod9\right)\Rightarrow a^3\equiv125\equiv8\left(mod9\right)\)(5)
\(a\equiv7\left(mod9\right)\Rightarrow a^3\equiv343\equiv1\left(mod9\right)\)(6)
\(a\equiv8\left(mod9\right)\Rightarrow a^3\equiv512\equiv8\left(mod9\right)\)(7)
Từ (1),(2),(3),(4),(5),(6),(7) => lập phương của 1 số nguyên bất kỳ khi chia cho 9 có số dư là 0,1,8
Dễ thấy: để a3+b3+c3 chia hết cho 9 => 1 trong 3 số a,b,c hoặc cả 3 số a,b,c phải chia hết cho 3 =>
=> abc chia hết cho 3. Vậy a3+b3+c3 chia hết cho 9 thì abc chia hết cho 3