Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
bá đạo
Xem chi tiết
Tạ Duy Phương
25 tháng 12 2015 lúc 21:10

Ta cm được: \(a^2+b^2+c^2\ge\frac{\left(a+b+c\right)^2}{3}\)

\(A=x^4+y^4+z^4\ge x^2y^2+y^2z^2+z^2x^2\ge\frac{\left(xy+yz+zx\right)^2}{3}=\frac{1}{3}\)

Min A = 1/3 khi và chỉ khi \(x=y=z=\frac{1}{\sqrt{3}}\)

Trần Thị Duyên
Xem chi tiết
Hà Khanh Việt Hoàng
Xem chi tiết
Phạm Quốc Cường
10 tháng 9 2018 lúc 21:08

Ta có: \(P=x^4+y^4+z^4\ge x^2y^2+y^2z^2+z^2x^2\ge\frac{\left(xy+yz+zx\right)^2}{3}=\frac{2006^2}{3}\)

Hà Khanh Việt Hoàng
10 tháng 9 2018 lúc 21:12

trả lời rõ ra đc k bạn nếu đc thì thank bạn nhìu nha

Phạm Quốc Cường
10 tháng 9 2018 lúc 21:17

Áp dụng BĐT phụ:  \(a^2+b^2+c^2\ge ab+bc+ca\)  và \(a^2+b^2+c^2\ge\frac{\left(a+b+c\right)^2}{3}\) 

Ta có: \(x^4+y^4+z^4=\left(x^2\right)^2+\left(y^2\right)^2+\left(z^2\right)^2\ge x^2y^2+y^2z^2+z^2x^2\ge\frac{\left(xy+yz+zx\right)^2}{3}=\frac{2006^2}{3}\) 

Dấu "=" khi \(x=y=z=\sqrt{\frac{2006}{3}}\)

Họ Và Tên
Xem chi tiết
Etermintrude💫
21 tháng 5 2021 lúc 14:53

undefined

MH van Stomm
Xem chi tiết
Nguyen Duy Dai
Xem chi tiết
Tran Le Khanh Linh
21 tháng 8 2020 lúc 20:17

Bài này phải tìm GTLN chứ nhỉ?!

Khách vãng lai đã xóa
Dieren
Xem chi tiết
Bình Nguyễn Thái
Xem chi tiết
Lê Chí Cường
Xem chi tiết
Thắng Nguyễn
28 tháng 11 2016 lúc 21:27

Áp dụng BĐT AM-GM ta có:

\(\frac{x^4}{y+3z}+\frac{y+3z}{16}+\frac{1}{4}+\frac{1}{4}\ge4\sqrt[4]{\frac{x^4}{y+3z}\cdot\frac{y+3z}{16}\cdot\frac{1}{4}\cdot\frac{1}{4}}=x\)

\(\Rightarrow\frac{x^4}{y+3z}\ge x-\frac{y+3z}{16}-\frac{1}{2}\).Tương tự ta có:

\(\frac{y^4}{z+3x}\ge y-\frac{z+3x}{16}-\frac{1}{2};\frac{z^4}{x+3y}\ge z-\frac{x+3y}{16}-\frac{1}{2}\)

Cộng theo vế ta có:

\(P\ge\frac{3}{4}\left(x+y+z\right)-\frac{3}{2}\ge\frac{3}{4}\cdot3-\frac{3}{2}=\frac{3}{4}\)

Dấu "=" khi x=y=z=1

Phú Lê Hoàng
28 tháng 11 2016 lúc 21:53

xin cho mình hỏi sao x+y+z lại\(\ge\)xy+yz+zx vậy

Lê Chí Cường
28 tháng 11 2016 lúc 22:07

Áp dụng bất đẳng thức AM-GM, ta có: \(a^2+b^2+c^2\ge ab+bc+ca\)

<=>\(a^2+b^2+c^2+2ab+2bc+2ca\ge3\left(ab+bc+ca\right)\)

<=>\(\left(a+b+c\right)^2\ge9\)

<=>\(a+b+c\ge3\)