Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
Cho x,y,z thỏa mãn xy+yz+zx=1
tìm GTNN của A= x^4+y^4+z^4
cho x,y,z thỏa măn xy+yz+zx=2006.TÍnh GTNN của P=x^4+y^4+z^4
Cho x, y, z là các số dương thỏa mãn \(xy+yz+zx=\dfrac{9}{4}\)
Tìm gtnn P=\(x^2+14y^2+10z^2-4.\sqrt{2y}\)
Cho x,y,z thỏa mản x+y+z=3. Tìm gtnn của xy+yz+zx
cho x y z > 0 và x+y+z=1. Tìm GTNN của \(P=\sqrt{\frac{xy}{z+xy}}+\sqrt{\frac{yz}{x+yz}}+\sqrt{\frac{zx}{y+zx}}\)
Cho x,y,z > 0 thỏa xy+yz+zx=xyz. Chứng minh:
\(\frac{x^4+y^4}{xy\left(x^3+y^3\right)}+\frac{y^4+z^4}{yz\left(y^3+z^3\right)}+\frac{z^4+x^4}{zx\left(z^3+x^3\right)}\ge1\)
Cho các số thực dương x,y,z thỏa mãn: xy+yz+zx=3. Tìm GTNN của:
\(P=\frac{x^4}{y+3z}+\frac{y^4}{z+3x}+\frac{z^4}{z+3y}\)
Cho các số thực dương x,y,z thỏa mãn x^3+y^3+z^3=24.Tìm GTNN cua biểu thức
P=\((xyz+2(x+y+z)^2)/(xy+yz+zx)-8/(xy+yz+zx+1)\)
cho x y z > 0 và xyz=1. tìm gtln của \(P=\frac{xy}{x^4+y^4+xy}+\frac{yz}{y^4+z^4+yz}+\frac{zx}{z^4+x^4+zx}\)