1414/2828 + x = 1313/1010
x = ?
Tìm x 1313/1010+x=1414/2828
Bài làm
\(\frac{1313}{1010}+x=\frac{1414}{2828}\)
\(\Rightarrow\frac{13}{10}+x=\frac{14}{28}\)
\(x=\frac{14}{28}-\frac{13}{10}\)
\(x=\frac{1}{2}-\frac{13}{10}\)
\(x=\frac{10}{20}-\frac{26}{20}\)
\(x=-\frac{16}{20}\)
\(x=-\frac{4}{5}\)
Vậy \(x=-\frac{4}{5}\)
1010 + 1111 +1212 + 1313 +1414 + 1515
2020 + 2121 + 2222 + 2323 + 2424 + 2525
\(\frac{1010+1111+1212+1313+1414+1515}{2020+2121+2222+2323+2424+2525}=\frac{10\times101+11\times101+12\times101+13\times101+14\times101+15\times101}{20\times101+21\times101+22\times101+23\times101+24\times101+25\times101}=\frac{101\times\left(10+11+12+13+14+15\right)}{101\times\left(20+21+22+23+24+25\right)}\)
\(=\frac{10+11+12+13+14+15}{20+21+22+23+24+25}=\frac{75}{135}=\frac{5}{9}\)
1010+1111+1212+1313+1414+1515= 7575
2020+2121+2222+2323+2424+2525= 13635
11+22+33+44+55+66+77+88+99+1010+1111+1212+1313+1414+1515+1616+.........+20162016=?
tìm x
a) 1313/2828 + x = 2323/4646
b) 23/69 - x = 17 / 153
a)\(\Leftrightarrow\)\(x=\dfrac{2323}{4646}-\dfrac{1313}{2828}\)
\(\Leftrightarrow\)\(x=\dfrac{1}{28}\)
b)\(\Leftrightarrow\)\(x=\dfrac{23}{69}-\dfrac{17}{153}\)
\(\Leftrightarrow\)\(x=\dfrac{2}{9}\)
a) \(\dfrac{1313}{2828}\) + \(x\) = \(\dfrac{2323}{4646}\)
\(\dfrac{13}{28}\) + \(x\) = \(\dfrac{1}{2}\)
\(x=\dfrac{1}{2}-\dfrac{13}{28}\)
\(x=\dfrac{14}{28}-\dfrac{13}{28}\)
\(x=\dfrac{1}{28}\)
b) \(\dfrac{23}{69}-x=\dfrac{17}{153}\)
\(\dfrac{1}{3}-x=\dfrac{1}{9}\)
\(x=\dfrac{1}{9}+\dfrac{1}{3}\)
\(x=\dfrac{1}{9}+\dfrac{3}{9}\)
\(x=\dfrac{4}{9}\)
1313/2828 + x = 2323/4646 con nay rut gon da
23 / 69 - x = 17/153
\(\frac{1313}{2828}+x=\frac{2323}{4646}\)
hay \(\frac{13}{28}+x=\frac{1}{2}\)
\(x=\frac{1}{2}-\frac{13}{28}\)
\(x=\frac{1}{28}\)
\(\frac{23}{69}-x=\frac{17}{153}\)
hay \(\frac{1}{3}-x=\frac{1}{9}\)
\(x=\frac{1}{3}-\frac{1}{9}\)
\(x=\frac{2}{9}\)
rut gon phan số
a, 10/20; 12/72; 14/42; 25/100
b, 1010/1313; 1111/1414
c,143/154; 990/2610; 374/506
a) \(\dfrac{10}{20}=\dfrac{10:10}{20:10}=\dfrac{1}{2}\)
\(\dfrac{12}{72}=\dfrac{12:12}{72:12}=\dfrac{1}{6}\)
\(\dfrac{14}{42}=\dfrac{14:14}{42:14}=\dfrac{1}{3}\)
\(\dfrac{25}{100}=\dfrac{25:25}{100:25}=\dfrac{1}{4}\)
b) \(\dfrac{1010}{1313}=\dfrac{1010:101}{1313:101}=\dfrac{10}{13}\)
\(\dfrac{1111}{1414}=\dfrac{1111:101}{1414:101}=\dfrac{11}{14}\)
c) \(\dfrac{143}{154}=\dfrac{143:11}{154:11}=\dfrac{13}{14}\)
\(\dfrac{990}{2610}=\dfrac{990:90}{2610:90}=\dfrac{11}{29}\)
\(\dfrac{374}{506}=\dfrac{374:22}{506:22}=\dfrac{17}{23}\)
\(a)\dfrac{10}{20}=\dfrac{1}{2};\dfrac{12}{72}=\dfrac{1}{6};\dfrac{14}{42}=\dfrac{1}{3};\dfrac{25}{100}=\dfrac{1}{4}\)
\(b)\dfrac{1010}{1313}=\dfrac{10}{13};\dfrac{1111}{1414}=\dfrac{11}{14}\)
\(c)\dfrac{143}{154}=\dfrac{13}{14};\dfrac{990}{2610}=\dfrac{11}{29};\dfrac{374}{506}=\dfrac{17}{23}\)
Chúc bn học tốt !!!
1313/2828 + x = 2323/4646
5/7 + x/35 = 4/5
23/69 - x =17/153
\(a,\frac{1313}{2828}+x=\frac{2323}{4646}\)
\(\frac{13}{28}+x=\frac{1}{2}\)
\(x=\frac{1}{2}-\frac{13}{28}=\frac{1}{28}\)
\(b,\frac{5}{7}+\frac{x}{35}=\frac{4}{5}\)
\(\frac{x}{35}=\frac{4}{5}-\frac{5}{7}=\frac{3}{35}\)
\(\Rightarrow x=3\)
\(c,\frac{23}{69}-x=\frac{17}{153}\)
\(\frac{1}{3}-x=\frac{1}{9}\)
\(x=\frac{1}{3}-\frac{1}{9}=\frac{2}{9}\)
\(a,\frac{1313}{2828}+x=\frac{2323}{4646}\)
\(\frac{13}{28}+x=\frac{1}{2}\)
\(x=\frac{1}{2}-\frac{13}{28}=\frac{1}{28}\)
\(b,\frac{5}{7}+\frac{x}{35}=\frac{4}{5}\)
\(\frac{x}{35}=\frac{4}{5}-\frac{5}{7}=\frac{3}{35}\)
\(\Rightarrow x=3\)
\(c,\frac{23}{69}-x=\frac{17}{153}\)
\(x=\frac{23}{69}-\frac{17}{153}=\frac{2}{9}\)
Tìm x :
1313 x 1414 - 1414 x X = 1414 x 13
( 1 x 2 + 2 x 3 + 3 x 4 + ...+ 50x 51 ) x X = 2 x 4 + 4 x 6 + 6 x 8 + ...+ 100 x 102
X x ( X + 5 ) - 7 x ( X + 5 ) = 0
tìm B B = (1 - 12) x (1 - 13) x (1 - 14 x (1 - 15) x .... x (1 - 12003) x (1 - 12004)
Lúc nãy, cô còn dạy học nên giờ cô mới giảng cho em được nhé.
B = (1 - \(\dfrac{1}{2}\))\(\times\)(1 - \(\dfrac{1}{3}\))\(\times\)(1 - \(\dfrac{1}{4}\))\(\times\)(1-\(\dfrac{1}{5}\))\(\times\)...\(\times\)(1- \(\dfrac{1}{2003}\))\(\times\)(1-\(\dfrac{1}{2004}\))
B = \(\dfrac{2-1}{2}\)\(\times\)\(\dfrac{3-1}{3}\)\(\times\)\(\dfrac{4-1}{4}\)\(\times\)\(\dfrac{5-1}{5}\)\(\times\)...\(\times\)(\(\dfrac{2003-1}{2003}\))\(\times\)(\(\dfrac{2004-1}{2004}\))
B = \(\dfrac{1}{2}\)\(\times\)\(\dfrac{2}{3}\)\(\times\)\(\dfrac{3}{4}\)\(\times\)\(\dfrac{4}{5}\)\(\times\)...\(\times\)\(\dfrac{2002}{2003}\)\(\times\)\(\dfrac{2003}{2004}\)
B = \(\dfrac{2\times3\times4\times...\times2003}{2\times3\times4\times...\times2003}\)\(\times\) \(\dfrac{1}{2004}\)
B = \(\dfrac{1}{2004}\)