i là giao điểm 3 đường phân giác trong .một đường thẳng qua i cát tia bc tại a' và cắt ac ,ab tại b' ,c' .chứng minh bc/ ia' + ac /ib' = ab /ic'
Cho tam giác ABC vuông tại A , AB<AC và I là giao điểm các đường phân giác của tam giác . Gọi D, E, F là chân các đường vuông góc kẻ từ I đến AB , AC , BC
a, CHứng minh AD = AE , BD =BF , CF= CE
b , Tính độ dài BC ,AD và AE biết rằng AB = 9cm , AC = 12cm
c , Chứng minh tổng IA + IB + IC lớn hơn nửa chu vi tam giác ABC
d , Các đường phân giác góc ngoài tại đỉnh B và C cắt nhau tại K . Chứng minh A , I , K thẳng hàng
sorry , I don't no
Em lớp 6 , chịu thôi
KB ko chị
Cho \(\Delta ABC\) có I là giao 3 đường phân giác. Một đường thẳng d đi qua I cắt BC, AC, AB ở A', B', C'.
Chứng minh \(\frac{BC}{IA'}+\frac{AC}{IB'}=\frac{AB}{IC'}\)
4)cho tam giác ABC ( AB <AC ). Trên tia đối của tia CA lấy điểm D sao cho CD=AB. Các đường trung trực của các đoạn thẳng BC và AD cắt nhau tại I. chứng minh rằng:
a) IA=ID;IB=IC
b) tam giác IAB= tam giác IDC
c)AI là tia phân giác cảu góc BAC
5)cho tỉ lệ thức: \(\dfrac{a}{b}=\dfrac{c}{d}\). chứng minh rằng ta có tỉ lệ thức sau : \(\left(\dfrac{a+b}{c+d^{ }}\right)^2\)= \(\dfrac{a^2+b^2}{c^2+d^2}\)
5. ta có:
\(\dfrac{a}{b}=\dfrac{c}{d}\Rightarrow\dfrac{a}{c}=\dfrac{b}{d}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{a}{c}=\dfrac{b}{d}=\dfrac{a+b}{c+d}\) \(a.b=c.d\)
\(\left(\dfrac{a+b}{c+d}\right)^2=\dfrac{\left(a+b\right)^2-2ab}{\left(c+d\right)^2-2cd}\)
Mà a+b = c+ d; ab = cd
=> đfcm
Bài 4:
a: Ta có: I nằm trên đường trung trực của AD
nên IA=ID
Ta có: I nằm trên đường trung trực của BC
nên IB=IC
b: Xét ΔIAB và ΔIDC có
IA=ID
\(\widehat{AIB}=\widehat{DIC}\)
IB=IC
Do đó: ΔIAB=ΔIDC
Câu 5:
Đặt $\frac{a}{b}=\frac{c}{d}=k\Rightarrow a=bk; c=dk$
Khi đó:
$(\frac{a+b}{c+d})^2=(\frac{bk+b}{dk+d})^2=[\frac{b(k+1)}{d(k+1)}]^2=\frac{b^2}{d^2}(1)$
$\frac{a^2+b^2}{c^2+d^2}=\frac{(bk)^2+b^2}{(dk)^2+d^2}=\frac{b^2(k^2+1)}{d^2(k^2+1)}=\frac{b^2}{d^2}(2)$
Từ $(1); (2)\Rightarrow (\frac{a+b}{c+d})^2=\frac{a^2+b^2}{c^2+d^2}$ (đpcm)
giups minh cau 1d, 2c , cam on nhieu
1. Cho tam giác ABC có ba góc nhọn. Đường tròn tâm (O) đường kính BC cắt hai cạnh Ab , AC lần lượt tại E và F. Gọi H là giao điểm của CE và BF, D là giao điểm của AD và BC.
a) Chứng minh AEHF nội tiếp
b) Chứng minh EC là tia phân giác của góc DEF
c) Đường thẳng EF cắt BC tại M, Chứng minh MB.MC=ME.MF=MO.MD
d) AD cắt đường tròn (O) tại I, chứng minh MI là tiếp tuyến của (O)
e) Đường thẳng qua D song song với MF, cắt AB và AC lần lượt tại K và L. Chứng minh : M, K, L, O cùng thuộc một đường tròn.
2. Từ một điểm A nằm ngoài đường tròn (O) kẻ hai tiếp tuyến AB và AC đến (O) (B và C là các tiếp điểm) và một cát tuyến ADE không đi qua tâm O (D nằm giữa A và E), gọi I là trung điểm của DE.
a) Chứng minh 5 điểm A;B;O;I;C cùng nằm trên một đường tròn suy ra IA là phân giác của góc BIC
b) BC cắt AE tại K. Chứng minh KA.KI=KD.KE
c) Qua C kẻ đường thẳng song với AB, đường này cắt các đướng thẳng BE, BD lần lượt tại P và Q. Chứng minh C là trung điểm của PQ.
d) Đường thẳng OI cắt đường tròn (O) tại S và H. Đường thẳng HK cắt (O) tại điểm thứ hai là T. Chứng minh 3 điểm A, T, S thẳng hàng
Cho tam giác ABC có AB = AC Gọi M là trung điểm của BC. Qua B kẻ đường thẳng vuông góc với AB, qua C kẻ đường thẳng vuông góc với AC, chúng cắt nhau tại I. Chứng minh: a, Tam giác AMB = tam giác AMC b. AM vuông góc BC c, IB = IC d, 3 điểm A, M, I thẳng hàng.
a: Xét ΔAMB và ΔAMC có
AM chung
MB=MC
AB=AC
Do đó: ΔAMB=ΔAMC
b: Ta có; ΔAMB=ΔAMC
=>\(\widehat{AMB}=\widehat{AMC}\)
mà \(\widehat{AMB}+\widehat{AMC}=180^0\)(hai góc kề bù)
nên \(\widehat{AMB}=\widehat{AMC}=\dfrac{180^0}{2}=90^0\)
=>AM\(\perp\)BC
c: Xét ΔABI vuông tại B và ΔACI vuông tại C có
AI chung
AB=AC
Do đó: ΔABI=ΔACI
=>IB=IC
d: Ta có: IB=IC
=>I nằm trên đường trung trực của BC(1)
Ta có: ΔABC cân tại A
mà AM là đường trung tuyến
nên AM là trung trực của BC(2)
Từ (1) và (2) suy ra A,M,I thẳng hàng
Cho tam giác ABC đều, I là một điểm nằm trong tam giác. Vẽ đường thẳng qua I và song song với BC, đường thẳng này cắt AB, AC theo thứ tự tại M và N. a) Chứng minh AI<AM . b) Chứng minh IA+IB+IC<AB+AC .
Bài 1: Cho tam giac ABC, M là trung điểm cua AB. Đường thẳng qua M và song song với BC cắt AC ở I và song song với AB cắt BC ở k. Chứng minh rằng: a) AM=IK b) Tam giác AMI bằng tam giác IKC c) AI=IC Bài 2: Cho tam giác ABC vuông tại A. Gọi I là trung điểm BC. Trên tia đối của tia IA lấy điểm D sao cho ID=IA a) CMR tam giác BID bằng tam giác CIA b) CMR : BD vuông góc với AB c) Qua A kẻ đường thẳng song song với BC cắt đường thẳng BD tại M. C/M tam giác BAM bằng tam giác ABC d) CMR: AB là tia phân giác cuả góc DAM Bài 3: Cho tam giác ABC vuông ở A và AB=AC.Gọi K là trung điểm của BC a) C/M: tam giác AKB bằng tam giác AKC b) C/M: AK vuông góc với BC c) từ C vẽ đường vuông góc với BC cắt đường thẳng AB tại E.C/M EK song song với AK Bài 4: Cho tam giác ABC có AB=AC, kẻ BD vuông góc với AC, CE vuông góc với AB(D thuộc AC, E thuộc AB). Gọi O là giao điểm của BD và CE. CMR a) BD= CE b) tam giác OEB bằng tam giác ODC c) AO là tia phân giác cua góc BAC
1. Câu hỏi của 1234567890 - Toán lớp 7 - Học toán với OnlineMath
Cho tam giác ABC, trên tia đối của BC lấy điểm D, trên tia đối của CD lấy điểm E sao cho BD=BC=CE. Qua D kẻ đường thẳng song song với AB cắt AC taih H. Qua E kẻ dường thẳng song song với AC cắt AB tại K. Chúng giao nhau tại I. a. Tứ giác PHAC là hình gì? Vì sao? b. Tia IA cát BC tại M. Chứng minh MB=MC. c. Tìm điều kiện của tam giác ABC để DHKE là hình thang cân.
Bài 3(3,0 điểm). Cho tam giác ABC, đường phân giác của góc A cắt cạnh BC tại điểm I. Qua I kẻ đường thẳng song song với AC, cắt AB tại M.
1. Cho AC= 6cm, IB= 3cm, IC= 4,5cm .Tính AB; IM; BM;
2. (0,5 điểm) Chứng minh \(\dfrac{MB}{MA}\)= \(\dfrac{AB}{AC}\)
3. (0,5 điểm) Trên AC lấy điểm Nsao cho AN= AM. Chứng minh IN.BC =IC.AB
CHỈ CẦN GIẢI CÂU 3 THÔI Ạ