a: Xét ΔAMB và ΔAMC có
AM chung
MB=MC
AB=AC
Do đó: ΔAMB=ΔAMC
b: Ta có; ΔAMB=ΔAMC
=>\(\widehat{AMB}=\widehat{AMC}\)
mà \(\widehat{AMB}+\widehat{AMC}=180^0\)(hai góc kề bù)
nên \(\widehat{AMB}=\widehat{AMC}=\dfrac{180^0}{2}=90^0\)
=>AM\(\perp\)BC
c: Xét ΔABI vuông tại B và ΔACI vuông tại C có
AI chung
AB=AC
Do đó: ΔABI=ΔACI
=>IB=IC
d: Ta có: IB=IC
=>I nằm trên đường trung trực của BC(1)
Ta có: ΔABC cân tại A
mà AM là đường trung tuyến
nên AM là trung trực của BC(2)
Từ (1) và (2) suy ra A,M,I thẳng hàng