Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Minh Châu
Xem chi tiết
thuychi_065
Xem chi tiết
Minh Hiếu
17 tháng 9 2023 lúc 11:09

Ta có: \(a^2+1=a^2+ab+bc+ca=\left(a+b\right)\left(c+a\right)\)

Tương tự: \(\left\{{}\begin{matrix}b^2+1=\left(a+b\right)\left(b+c\right)\\c^2+1=\left(c+a\right)\left(b+c\right)\end{matrix}\right.\)

=> \(\left(a^2+1\right)\left(b^2+1\right)\left(c^2+1\right)=\left[\left(a+b\right)\left(b+c\right)\left(c+a\right)\right]^2\)

Mặt khác: \(a+b+c-abc=a\left(1-bc\right)+b+c\)

                \(=a\left(ab+ca\right)+b+c\)     (Vì ab+bc+ca=1)

               \(=\left(a^2+1\right)\left(b+c\right)\)

               \(=\left(a+b\right)\left(b+c\right)\left(c+a\right)\)    (Vì \(a^2+1=\left(a+b\right)\left(c+a\right)\))

\(T=1\)

Nguyễn Huy Tú
Xem chi tiết
Thủy Tiên
5 tháng 8 2016 lúc 21:09

 \(A=\frac{1}{ab+a+1}+\frac{1}{bc+b+1}+\frac{1}{ca+c+1}\)

\(=\frac{c}{c\left(1+a+ab\right)}+\frac{ac}{ac\left(1+b+bc\right)}+\frac{1}{1+c+ca}\)

\(=\frac{c}{c+ac+abc}+\frac{ac}{ac+abc+abc^2}+\frac{1}{1+c+ca}\)

thay a.b.c=1 Ta đc:

\(a=\frac{c}{c+ac+1}+\frac{ac}{ac+1+c}+\frac{1}{1+c+a}\) cộng 3 phân số cùng mẫu c+ac+1

\(=\frac{c+ac+1}{c+ac+1}=1\)

tick cho mk vs nhé

Nguyễn Thị Hương
Xem chi tiết
Nguyễn Hoàng Minh
20 tháng 11 2021 lúc 18:16

 

\(P=bc\sqrt{a-1}+ca\sqrt{b-9}+ab\sqrt{c-16}\\ \Leftrightarrow\dfrac{P}{abc}=\dfrac{P}{1152}=\dfrac{\sqrt{a-1}}{a}+\dfrac{\sqrt{b-9}}{b}+\dfrac{\sqrt{c-16}}{c}\)

Áp dụng BĐT Cauchy:

\(2\sqrt{a-1}\le a-1+1=a\Leftrightarrow\dfrac{\sqrt{a-1}}{a}\le\dfrac{1}{2}\\ 2\sqrt{9\left(b-9\right)}\le9+b-9=b\Leftrightarrow\dfrac{\sqrt{b-9}}{b}\le\dfrac{1}{6}\\ 2\sqrt{16\left(c-16\right)}\le16+b-16=c\Leftrightarrow\dfrac{\sqrt{c-16}}{c}\le\dfrac{1}{8}\)

Cộng VTV \(\Leftrightarrow\dfrac{P}{1152}\le\dfrac{1}{2}+\dfrac{1}{6}+\dfrac{1}{8}=\dfrac{19}{24}\)

\(\Leftrightarrow P\le912\)

Dấu \("="\Leftrightarrow\left\{{}\begin{matrix}a=1\\b-9=9\\c-16=16\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=1\\b=18\\c=32\end{matrix}\right.\)

Bánh Bao Nhân Thịt
Xem chi tiết
meme
20 tháng 8 2023 lúc 9:49

Để giải bài toán này, ta sẽ bắt đầu bằng việc tìm giá trị của a + b + c và ab + bc + ca.

Theo đề bài, ta có: a.b.c = 1

Đặt S = a + b + c và P = ab + bc + ca. Ta có thể viết lại biểu thức ban đầu như sau: (a^2 + b^2 + c^2) - (1/a^2 + 1/b^2 + 1/c^2) = 8(a + b + c) - 8(ab + bc + ca) (a^2 + b^2 + c^2) - (1/a^2 + 1/b^2 + 1/c^2) = 8S - 8P

Để đơn giản hóa công thức, ta sẽ nhân cả hai vế của phương trình với a^2b^2c^2: (a^2b^2c^2)(a^2 + b^2 + c^2) - (a^2b^2c^2)(1/a^2 + 1/b^2 + 1/c^2) = 8(a^2b^2c^2)(S - P)

Sau khi nhân và rút gọn, ta được: (a^4b^2 + a^2b^4 + a^4c^2 + a^2c^4 + b^4c^2 + b^2c^4) - (a^2b^2 + a^2c^2 + b^2c^2) = 8(a^2b^2c^2)(S - P)

Do a.b.c = 1, ta có: a^2b^2c^2 = 1

Thay lại vào phương trình trên, ta có: (a^4b^2 + a^2b^4 + a^4c^2 + a^2c^4 + b^4c^2 + b^2c^4) - (a^2b^2 + a^2c^2 + b^2c^2) = 8(S - P)

Rút gọn các thành phần, ta được: a^4b^2 + a^2b^4 + a^4c^2 + a^2c^4 + b^4c^2 + b^2c^4 - a^2b^2 - a^2c^2 - b^2c^2 = 8(S - P)

Ta có thể viết lại đẹp hơn bằng cách nhân 2 vào cả hai vế: 2(a^4b^2 + a^2b^4 + a^4c^2 + a^2c^4 + b^4c^2 + b^2c^4 - a^2b^2 - a^2c^2 - b^2c^2) = 16(S - P)

Rút gọn, ta được: 2(a^4b^2 + a^2b^4 + a^4c^2 + a^2c^4 + b^4c^2 + b^2c^4 - a^2b^2 - a^2c^2 - b^2c^2) = 16S - 16P

Từ đó, ta có: 16P - 16S = 2(a^4b^2 + a^2b^4 + a^4c^2 + a^2c^4 + b^4c^2 + b^2c^4 - a^2b^2 - a^2c^2 - b^2c^2)

Chú ý rằng: P = ab + bc + ca S = a + b + c

Tiếp theo, ta sẽ xem xét biểu thức P = 1/a-1 + 1/b-1 + 1/c-1. Ta có thể viết lại biểu thức này như sau: P = (1/a + 1/b + 1/c) - 3

Ta biết rằng abc = 1, do đó: 1/a + 1/b + 1/c = ab + bc + ca

Thay vào biểu thức P, ta có: P = (ab + bc + ca) - 3

Như vậy, biểu thức P có thể được thay bằng biểu thức P = P - 3.

Tiếp theo, ta sẽ sử dụng kết quả từ phương trình trên để tính giá trị của P.

16P - 16S = 2(a^4b^2 + a^2b^4 + a^4c^2 + a^2c^4 + b^4c^2 + b^2c^4 - a^2b^2 - a^2c^2 - b^2c^2)

Thay P = P - 3 vào phương trình trên, ta có: 16(P - 3) - 16S = 2(a^4b^2 + a^2b^4 + a^4c^2 + a^2c^4 + b^4c^2 + b^2c^4 - a^2b^2 - a^2c^2 - b^2c^2)

Rút gọn và chuyển thành phương trình bậc hai: 16P - 48 - 16S = 2(a^4b^2 + a^2b^4 + a^4c^2 + a^2c^4 + b^4c^2 + b^2c^4 - a^2b^2 - a^2c^2 - b^2c^2)

8P - 24 - 8S = a^4b^2 + a^2b^4 + a^4c^2 + a^2c^4 + b^4c^2 + b^2c^4 - a^2b^2 - a^2c^2 - b^2c^2

8P - 8S = a^4b^2 + a^2b^4 + a^4c^2 + a^2c^4 + b^4c^2 + b^2c^4 - a^2b^2 - a^2c^2 - b^2c^2 + 24

8(P - S) = (a^2b^2 + a^2c^2 + b^2c^2)^2 - (a^2b^2 + a^2c^2 + b^2c^2) - a^2b^2 - a^2c^2 - b^2c^2 + 24

Đặt Q = a^2b^2 + a^2c^2 + b^2c^2, ta có: 8(P - S) = Q^2 - Q - Q + 24

8(P - S) = Q^2 - 2Q + 24

8(P - S) = (Q - 4)^2

Ta có thể viết lại thành phương trình: (P - S) = (Q - 4)^2 / 8

Do đó, giá trị của P - S là bình phương của một số chia cho 8.

Tuy nhiên, chúng ta không có thông tin cụ thể về giá trị của Q, vì vậy không thể tìm ra giá trị chính xác của P - S.

Vì vậy, không thể tính giá trị của biểu thức P = 1/a-1 + 1/b-1 + 1/c-1 chỉ dựa trên thông tin đã cho trong bài toán.

Lê Anh Thư
Xem chi tiết
Ác Mộng
19 tháng 6 2015 lúc 10:04

\(S=\frac{1}{1+a+ab}+\frac{1}{1+b+bc}+\frac{1}{1+c+ca}=\frac{c}{c+ac+abc}+\frac{ac}{ac+abc+abc^2}+\frac{1}{1+c+ac}=\frac{c}{c+ac+1}+\frac{ac}{ac+1+c}+\frac{1}{1+c+ac}=1\)

Minh Triều
19 tháng 6 2015 lúc 10:12

S=\(\frac{1}{1+a+ab}+\frac{1}{1+b+bc}+\frac{1}{1+c+ca}\)

=\(\frac{c}{c\left(1+a+ab\right)}+\frac{ac}{ac\left(1+b+bc\right)}+\frac{1}{1+c+ca}\)

=\(\frac{c}{c+ac+abc}+\frac{ac}{ac+abc+abc^2}+\frac{1}{1+c+ca}\)

thay a.b.c=1 ta được 

\(S=\frac{c}{c+ac+1}+\frac{ac}{ac+1+c}+\frac{1}{1+c+a}\)(cộng 3 phân số cùng mẫu c+ac+1)

=\(\frac{c+ac+1}{c+ac+1}=1\)

Lê Thành trung
3 tháng 12 2016 lúc 19:55

dung roi day no lam theo cach cua to

trịnh ngọc thu
Xem chi tiết
trịnh ngọc thu
31 tháng 7 2016 lúc 13:41

Giups mình nha!!!!

hue nguyen
16 tháng 3 2017 lúc 21:54

mjk dùng njk gmail của mama bn giữ nguyên hạng tử đầu rồi thay 1=abc thử xem có đc k 

Nguyễn Trãi
30 tháng 3 2018 lúc 14:04

\(S=\frac{bc}{bc\left(1+a+ab\right)}+\frac{1}{1+b+bc}+\frac{b}{b\left(1+c+ac\right)}=>\)

\(S=\frac{bc}{abc+bc+ab^2c}+\frac{1}{1+bc+b}+\frac{b}{abc+bc+b}\)=>

\(S=\frac{bc}{1+b+bc}+\frac{1}{1+b+bc}+\frac{b}{1+b+bc}\)=>

\(S=\frac{1+b+bc}{1+b+bc}=1\)

Tùng Nguyễn
Xem chi tiết
Chờ thị trấn
Xem chi tiết