Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Thiên Hàn Nhật Linh
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết
T.Thùy Ninh
6 tháng 6 2017 lúc 11:17

\(a,\left(x+y\right)^2+\left(x-y\right)^2=x^2+2xy+y^2+x^2-2xy+y^2=2\left(x^2+y^2\right)\)\(b,2\left(x-y\right)\left(x+y\right)+\left(x+y\right)^2+\left(x-y\right)^2=2x^2-2y^2+x^2+2xy+y^2+x^2-2xy+y^2=3x^2\)\(c,\left(x-y+z\right)^2+\left(z-y\right)^2+2\left(x-y+z\right)\left(y-z\right)=\left[\left(x-y+z\right)-\left(z-y\right)\right]^2=\left(x-2y\right)^2\)

Lưu Ngọc Hải Đông
17 tháng 6 2017 lúc 19:03

a) \(\left(x+y\right)^2+\left(x-y\right)^2\)

=\(\left(x^2+2xy+y^2\right)+\left(x^2-2xy+y^2\right)\)

=\(x^2+2xy+y^2+x^2-2xy+y^2\)

\(2x^2+2y^2=2\left(x^2+y^2\right)\)

b) \(2\left(x-y\right)\left(x+y\right)+\left(x+y\right)^2+\left(x-y\right)^2\)
\(=\left(x-y\right)^2+2\left(x-y\right)\left(x+y\right)+\left(x+y\right)^2\)

=\(\left[\left(x-y\right)+\left(x+y\right)\right]^2\)

= \(\left(x-y+x+y\right)^2\)

\(=2x^2\)

c) \(\left(x-y+z\right)^2+\left(z-y\right)^2+2\left(x-y+z\right)\left(y-z\right)\)

\(=\left(x-y+z\right)^2-2\left(x-y+z\right)\left(z-y\right)+\left(z-y\right)^2\)

\(=\left[\left(x-y+z\right)-\left(z-y\right)\right]^2\)

= \(\left(x-y+z-z+y\right)^2=x^2\)

obito
12 tháng 10 2017 lúc 21:30

a. (x+y)2+(x−y)2

=x2+2xy+y2+x2−2xy+y2=2x2+2y2

b. 2(x−y)(x+y)+(x+y)2+(x−y)2

=[(x+y)+(x−y)]2=(2x)2=4x2

c. (x−y+z)2+(z−y)2+2(x−y+z)(y−z)

=(x−y+z)2+2(x−y+z)(y−z)+(y−z)2=[(x−y+x)+(y−z)]2=x2


Trình Nguyễn Quang Duy
Xem chi tiết
Khanh Nguyễn Ngọc
7 tháng 9 2020 lúc 8:18

\(\left(x+y-z\right)^2+2\left(z-x-y\right)\left(x+y\right)+\left(x+y\right)^2\)

\(=\left(x+y-z\right)^2-2\left(x+y-z\right)\left(x+y\right)+\left(x+y\right)^2\)

\(\left[\left(x+y-z\right)-\left(x+y\right)\right]^2=z^2\)

Khách vãng lai đã xóa
FL.Han_
7 tháng 9 2020 lúc 16:33

\(\left(x+y-z\right)^2+2\left(z-x-y\right)\left(x+y\right)+\left(x+y\right)^2\)

\(=\left(x+y-z\right)^2-2\left(x+y-z\right)\left(x+y\right)+\left(x+y\right)^2\)

\(=\left(x+y-z-x+y\right)^2\)

\(=-z^2\)

Khách vãng lai đã xóa
NOOB
Xem chi tiết
Nguyễn Minh Đăng
22 tháng 7 2020 lúc 8:12

Bài làm:

Ta có: \(\left(x-y+z\right)^2+\left(z-y\right)^2+2\left(x-y+z\right)\left(y-z\right)\)

\(=\left(x-y+z\right)^2+2\left(x-y+z\right)\left(y-z\right)+\left(y-z\right)^2\)(hằng đẳng thức đầu)

\(=\left(x-y+z+y-z\right)^2=x^2\)

Khách vãng lai đã xóa
Nobi Nobita
22 tháng 7 2020 lúc 8:25

\(\left(x-y+z\right)^2+\left(z-y\right)^2+2\left(x-y+z\right)\left(y-z\right)\)

\(=\left(x-y+z\right)^2+2\left(x-y+z\right)\left(y-z\right)+\left(y-z\right)^2\)

\(=\left[\left(x-y+z\right)+\left(y-z\right)\right]^2=\left(x-y+z+y-z\right)^2=x^2\)

Khách vãng lai đã xóa
Little Girl
Xem chi tiết
Hay Lắm
28 tháng 6 2016 lúc 7:17

1)  2xy2+x2y4+1=(xy2)2+2xy2.1+12=(xy2+1)2

2)

a)2(x-y)(x+y)+(x+y)2+(x-y)2=(x+y+x-y)2=(2x)2=4x2

b)(x-y+z)2+(z-y)2+2(x-y+z)(y-z)

=(x-y+z)2+(y-z)2+2(x-y+z)(y-z)

=(x-y+z+y-z)2

=x2

Võ Đông Anh Tuấn
Xem chi tiết
Le Thi Khanh Huyen
3 tháng 7 2016 lúc 16:59

\(\left(x-y+z\right)^2+\left(z-y\right)^2+2\left(x-y+z\right)\left(y-z\right)\)

\(=\left(x-y+z\right)^2+\left(z-y\right)^2-2\left(x-y+z\right)\left(z-y\right)\)

\(=\left(x-y+z-z+y\right)^2\)

\(=x^2\)

Đỗ Thanh Tùng
3 tháng 7 2016 lúc 16:48

\(=\left(x-y+z+z-y\right)^2=\left(x+2z-2y\right)^2\)

Đỗ Thanh Tùng
3 tháng 7 2016 lúc 16:50

ý sai rồi dc sửa chứ

nếu dc thì vầy \(\left(x-y+z\right)^2+\left(z-y\right)^2-2\left(x-y+z\right)\left(z-y\right)=\left(x-y+z-z+y\right)^2=x^2\)

Huỳnh Thị Minh Huyền
Xem chi tiết
Lê Chí Công
26 tháng 2 2017 lúc 21:23

Dat  (x-y)2+(y-z)2+(x-z)2=A

=(x+y)3+z3-3x2y-3xy2-3xyz / A

=(x+y+z).(x2+2xy+y2-xy-yz+z2)-3xy(x+y+z) / A

=(x+y+z).(x2+y2+z2-xy-yz-xz) /A

=2(x+y+z).(x2+y2+z2-xy-yz-xz) /2A 

=(x+y+z)[ (x2-2xy+y2)+(y2-2yz+z2)+(x2-2xz+z2) / 2A

=(x+y+z).[ (x-y}2+(y-z)2+(x-z)] /2A

=(x+y+z). A /2A

=x+y+z /2

thánh yasuo lmht
26 tháng 2 2017 lúc 21:37

kimh thế

thánh yasuo lmht
26 tháng 2 2017 lúc 21:49

nếu mẫu toàn cộng thì còn làm đc

Big City Boy
Xem chi tiết
Nguyen Dinh Dung
Xem chi tiết