chứng minh: 5^2015 + 5^2016 + 5^2017 chia hết cho 31
Chứng tỏ :
a) 5^2017+5^2016+5^2015 chia hết cho 31
b) 1+7+7^2+7^3+...+7^101 chia hết cho 8
a )
Ta có :
\(5^{2017}+5^{2016}+5^{2015}\)
\(=5^{2015}\left(5^2+5+1\right)\)
\(=5^{2015}.31⋮31\left(đpcm\right)\)
b )
Số lượng số dãy số trên là :
\(\left(101-0\right):1+1=102\)( số )
Do \(102⋮2\)nên ta nhóm 2 số liền nhau thành 1 nhóm như sau :
\(\left(1+7\right)+\left(7^2+7^3\right)+...+\left(7^{100}+7^{101}\right)\)
\(=8+7^2\left(1+7\right)+...+7^{100}\left(1+7\right)\)
\(=8+7^2.8+...+7^{100}.8\)
\(=8\left(1+7^2+...+7^{100}\right)⋮8\left(đpcm\right)\)
Chứng tỏ rằng:
\(^{5^{2017}+5^{2016}+5^{2015}}\) chia hết cho 31
Giúp mk với các bạn
52017 + 52016 + 52015 = 52015 x ( 52 + 5 + 1) = 52015 x (25 + 6) = 52015 x 31
Vậy 52017 + 52016 + 52015 chia hết cho 31.
Ta có: \(5^3\equiv1\left(mod31\right)\)
=> \(\left(5^3\right)^{671}\equiv1\left(mod31\right)\)
=> \(\begin{cases}\left(5^3\right)^{671}\cdot5^2\equiv25\left(mod31\right)\equiv25\left(mod31\right)\\\left(5^3\right)^{671}\cdot5^3\equiv5^3\left(mod31\right)\equiv1\left(mod31\right)\\\left(5^3\right)^{671}\cdot5^3\cdot5\equiv5^4\left(mod31\right)\equiv5\left(mod31\right)\end{cases}\)
=> \(\begin{cases}5^{2015}\equiv25\left(mod31\right)\\5^{2016}\equiv1\left(mod31\right)\\5^{2017}\equiv5\left(mod31\right)\end{cases}\)
=> \(5^{2015}+5^{2016}+5^{2017}\equiv25+5+1\left(mod31\right)\equiv0\left(mod31\right)\)
Vậy \(5^{2015}+5^{2016}+5^{2017}⋮31\left(đpcm\right)\)
52017+52016+52015
5^2015.(5^2+5+1)
5^2015.31 chia hết cho 31
=> Tổng trên chia hết cho 31
Chứng minh: 52016 +52015+52014 chia hết cho 31
5^2016 + 5^2015 + 5^2014 = 5^2014 ( 5^2 + 5 + 1) = 5^2014 . ( 25 + 5 + 1) = 5^2014 . 3 1 chia hết cho 31
52016 +52015+52014
=52014.52+52014.5+52014.1
=52014.(52+5+1)
=52014.31
=>52016 +52015+52014 chia hết cho 31
sao lúc nào trieu dang trước thang Tran sau mà thang Tran cũng được li-ke hết vậy
a) Cho BCNN(x,y)=720, x+y=9 Tìm x/y
b)Tính 1-3+5-7+9-11+.....+2013-2015+2017
c)Cho S=6+25+125+5^4+...+5^2015
+)Chứng minh 4S+1 chia hết cho 5^2016
+)Chứng minh S chia hết cho 6
a là x và y thuộc nhóm rỗng
b thì =-1+-1+-1+...+-1+2017=-1008+2017=1009
c là vì 4S+1 là 5^2016 chia hết cho 5^2016
vì 6(5+5^2+...+5^2014) chia hết cho 6 và bằng S
1. Chứng minh rằng: 52017 + 52015 chia hết cho 13.
2. Cho a,b,c thuộc Z, biết: a2014 + b2015 + c2016 chia hết cho 6.
Chứng minh: a2016 + b2017 + c2018 chia hết cho 6.
=)) Mem nào giúp mình đc k?? Cảm ơn nhiều.
chứng minh 2015^2017+2017^2015 chia hết cho 2016
giúp minh với !!!!!!!!!!!!!!
Ta có:
20152017 + 20172015
= 20152017 + 1 + 20172015 - 1
= (20152017 + 12017) + (20172015 - 12015)
Do 20152017 + 12017 luôn chia hết cho 2015 + 1 = 2016; 20172015 - 12015 luôn chia hết cho 2017 - 1 = 2016
=> (20152017 + 12017) + (20172015 - 12015) chia hết cho 2016
=> 20152017 + 20172015 chia hết cho 2016 (đpcm)
cmr:[5^2016+5^2015+5^2014]chia hết cho 31
52016+52015+52014=52014(52+5+1)=52014.31 chia hết cho 31
=>đpcm
Chứng tỏ rằng :
A) 5 mũ 2016 + 5 mũ 2015 + 5 mũ 2016 chia hết cho 31
B) 1+7+7 mũ 2 + 7 mũ 3+ .....+7 mũ 701 chia hết cho 8
C) 4 mũ 39 + 4 mũ 40+ 4 mũ 41 chia hết cho 28
1+7+7 mũ 2+7 mũ 3......+7 mũ 100.Tính a,a là tổng dãy số trên
1. Cho A = \(2^{2016}-1\) . Chứng minh rằng A chia hết cho 105.
2.Chứng minh rằng \(5^{2017}+7^{2015}\) chia hết cho 12.
3. Chứng minh rằng B = \(3^{2^{2n}}+10\) chia hết cho 13.
4. Chứng minh rằng C = \(3^{2^{4n+1}}+2^{3^{4n+1}}+5\) luôn chia hết cho 22.
1. \(A=2^{2016}-1\)
\(2\equiv-1\left(mod3\right)\\ \Rightarrow2^{2016}\equiv1\left(mod3\right)\\ \Rightarrow2^{2016}-1\equiv0\left(mod3\right)\\ \Rightarrow A⋮3\)
\(2^{2016}=\left(2^4\right)^{504}=16^{504}\)
16 chia 5 dư 1 nên 16^504 chia 5 dư 1
=> 16^504-1 chia hết cho 5
hay A chia hết cho 5
\(2^{2016}-1=\left(2^3\right)^{672}-1=8^{672}-1⋮7\)
lý luận TT trg hợp A chia hết cho 5
(3;5;7)=1 = > A chia hết cho 105
2;3;4 TT ạ !!